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A composite plate girder consists of a concrete slab attached to a steel plate
girder through shear connectors. An evaluation of the ultimate load capacity
of continuous composite plate girders is very important in providing adequate
design criteria. The ultimate capacity of a continuous beam can be determined
by the simple plastic mechanism method if the interior support section has
a sufficient rotation capacity for a mechanism to form. However, most plate
girders have slenderness sections whose slenderness ratios generally exceed the
limiting values required for plastic design. Moreover, the ultimate bending
strengths of these slender sections are affected by local instabilities of compres-
sion flange and/or web, which cause premature failure. In the LFD method
of the AASHTO Specifications, continuous composite plate girder bridges are
designed based on elastic analyses and the elastic Maximum Load moment at
any section is limited to the yield moment. Test results have shown that typi-
cal composite plate girders in positive bending can reach their plastic moment
capacities due to the small web depth in compression. Nevertheless, the use of
the plastic moment capacity of positive bending sections is limited to simple
span bridge design because the moment-rotation behaviors of negative bending
sections are not well known.

The objective of this study is to evaluate the ultimate load capacity of
continuous composite plate girders. The ultimate capacity of a continuous
composite girder depends on the moment-rotation characteristics of the positive

and negative bending sections. Moment-curvature relationship of a positive

v



bending section is quite different from that of a negative bending section. In
this study, moment-rotation characteristics of the positive and negative bending
sections are investigated using analytical and experimental data respectively.
To evaluate the moment-rotation characteristics of a composite plate girder in
negative bending, an ultimate load test was performed on a 1/2 scale component
specimen.

A nonlinear computer program was developed to calculate the ultimate
capacity of a continuous composite girder with varying moment-curvature re-
lationships for the positive and negative bending sections. Based on the results
of a parametric study of the ultimate load capacity, a new design method was
proposed. Currently used design methods are investigated and the ultimate ca-
pacity calculated by these methods are compared with that by the new design
method.

The parametric study indicated that the load at which the elastic maximum
positive moment reached the plastic moment or the elastic maximum negative
moment reached the maximum bending capacity of the pier section (whichever
was smaller) provided a lower bound estimate of the ultimate load capacity of
continuous composite plate girders. In the new design method of continuous
composite plate girder bridges, the maximum positive and negative moments by
an elastic analysis are limited to the plastic moment of the positive section and
the maximum bending strength of the pier section respectively. This procedure
improves the limit state criteria and provides a more economical design than

the LFD method.

vi



TABLE OF CONTENTS

CHAPTER 1. INTRODUCTION......ooiiiiiiii e 1
1.1 Ultimate Strength........ ... 2
1.2 Experimental Program ... 3
1.3 Development of a Nonlinear Computer Program........................ 4

CHAPTER 2. BEHAVIOR AND STRENGTH OF THE POSITIVE

BENDING SECTION ... 6

2.1 Materials ... ..o 6
2.1.1 Stress-strain relationship of concrete .............................. 6
2.1.2 Stress-strain relationship of structural steel ...................... 7

2.2 Plastic Bending Moment ....................coo i 7
2.3 Moment-Curvature Analysis............ccoooiiiiiiiiie i, 9
2.3.1 Moment-curvature relationship ................................... 10
2.3.2 Concrete strength and crushing strain ........................... 11
2.3.3 Steel yield stress ... i 14
2.3.4 Slab dimension ...............o 15
2.3.5 Residual stress ... 15
2.3.6 Construction method ........................ .. ... ... 17
2.3.7 Comparison with test results ...................................... 20

2.4 Summary of Results.................... o 20

CHAPTER 3. BEHAVIOR AND STRENGTH OF THE NEGATIVE

BENDING SECTION ..., 23

3.1 Ultimate Bending Capacity ........................... ... 23
3.2 Moment-Rotation Relationship .......................................... 24
3.3 Plate Buckling Strength........................ . 25
3.3.1 Width/thickness ratio for compression flanges .................. 26
3.3.2 Width/thickness ratio for webs ...........................L 30

vil



3.4 Nominal Moment Strength ............................................... 32
3.5 QFormula.... ..o 36
3.6 Modification of Q Formula................................................ 39

CHAPTER 4. REVIEW OF DESIGN AND ANALYSIS METHODS

OF COMPOSITE GIRDER BRIDGES........................... 43
4.1 Load Levels and Performance Requirements............................ 43
4.2 Alternate Load Factor Design Method .................................. 44
4.3 Compact Section Design Method ........................................ 49
4.4 BEquilibrium Method .................. 50
CHAPTER 5. SUMMARY OF EXPERIMENTAL RESULTS................ 52
5.1 Ultimate Strength of Composite Plate Girders......................... 52
5.2 Interior-Support-Model Test ............... ... ... 53
5.3 Moment-Rotation Tests of Steel Girders ............................... 54
5.4 Component Test Report ........... ... ... ... . 55
5.5 Moment-Rotation Test of a Composite Plate Girder
in Negative Bending ........................ 57
5.5.1 Test specimen ............oooiiiiii i 57
5.8.2 Test set-up .......oooi i 59
5.5.3 Test procedure ...............oooiii 59
5.5.4 Dead load test ............ ... 62
5.5.5 Overload test ................o 65
5.5.6 Ultimate load test ...................... . 66
5.5.7 Comparison with other test results ............................... 69
5.6 Overall Summary ......... ... .. 74
CHAPTER 6. DEVELOPMENT OF A COMPUTER PROGRAM ......... 76
6.1 Introduction ... 76
6.2 ASSUMPLIONS .....o.ooiieii 78
6.3 Moment-Curvature Relationship ................... ... ..., 78

viii



6.4 Combined Stiffness Method ...........................o i 79
6.5 Program Organization ... 81

CHAPTER 7. ULTIMATE STRENGTH OF CONTINUOUS

COMPOSITE PLATE GIRDERS ... 84
7.1 Introduction ... 84
7.2 Historical Review ....... ... 86
7.3 Numerical Example ... 88
7.3.1 Cross sectional properties .................coiiiiiiiiiiiiiiiiinnn. 88
7.3.2 Loading ... 91
733 Results ..o 92
7.3.4 Effective plastic moment ................... ... ... 95
7.4 Parametric Study of Ultimate Load Capacity ......................... 95
7.4.1 Inelastic stiffness of positive section .............................. 96
7.4.2 Inelastic stiffness of negative section ............................. 99
7.4.3 Yield moment of positive section ................................ 104
7.4.4 Cracking moment of negative section ........................... 109
7.4.5 The ratio of maximum positive to negative

moment capacities ............. 109
7.4.6 First hinge load as a lower bound estimate .................... 113
7.4.7 Ultimate load capacity by the Eurocode 4 method ............ 113

CHAPTER 8. PROPOSED DESIGN METHOD OF CONTINUQUS
COMPOSITE PLATE GIRDER BRIDGES .................... 116
8.1 Introduction ............. e 116
8.2 Proposed Design Method .............................................. 116
3.3 Design Example ... 117
CHAPTER 9. SUMMARY AND CONCLUSIONS .................oooo. .. 121
REFERENCES .. 124
VI A 128



LIST OF TABLES

Table Page
2.1 Summary of various parameters and analysis results ...................... 12
2.2 Dimensions and material properties of Gl and G2 ........................ 20
3.1 Plate buckling coefficient k ................ 27
3.2 Comparison of the modified Q formula with the original Q formula ..... 42
4.1 Load levels and performance conditions .......................... ... 44
5.1 Loads at the characterizing features ......................... ... 62
8.1 Design requirements of the proposed design method ..................... 118
8.2 Comparison of the design examples by the two methods ................ 119



LIST OF FIGURES

Figure Page
1.1 Plastic analysis of a continuous beam ..................................... 3
2.1 Stress-strain curve for concrete ........................ 8
2.2 Stress-strain curve for structural steel ......................... ... ... 8
2.3 Plastic stress distribution for positive bending ............................ 9
2.4 Idealization of cross section ............................ 10
2.5 Cross section and material properties of the basic model ............... 11
2.6 Effect of concrete strength .................................. . 13
2.7 Effect of concrete crushing strain ......................................... 13
2.8 Effect of steel'yield stress ..............o.oo 14
2.9 Effect of steel yield stress in a nondimensional form ................... . 15
2.10 Effect of slab width ...................... 16
2.11 Effect of slab thickness ................................ 16

2.12 Typical and idealized residual stress patterns ............................ 17
2.13 Effect of residual stress ..................... 18
2.14 Effect of construction method ................................. ... 19
2.15 Comparison of composite actions ......................oooiiii 19
2.16 Comparison with test results .......................... 21
2.17 Upper and lower bounds ................coooo 22
3.1 Plastic stress distribution for negative bending .......................... 24
3.2 Generalized beam behavior .................................. .. 25
3.3 Plate buckling strength in edge compression ............................. 28
3.4 Stress distribution for a plate girder with a slender web ................ 31
3.5 Nominal flexural strength vs generalized slenderness ratio for beams ..34
3.6 Critical stress vs flange slenderness ratio for plate girders .............. 34
3.7 Nominal moment strength in 1990 AASHTO specifications ............ 35

xi



3.8 Nominal flexural strength vs Q value curve of the Q formula .......... 38

3.9 Histogram of the ratio of predicted strength to test strength ........... 38
3.10 Moment vs strain at compression flange curve ........................... 40
3.11 Nominal flexural strength vs Q value curve

of the modified Q formula ................... ... 41

3.12 Comparison of the modified Q formula with the original Q formula ..42

4.1 Load distribution patterns ......................co 45
4.2 Residual forces and automoments ......................... ... 46
4.3 Beam line method ................ ... 46
4.4 Effective plastic moment ............... ... ... 48
4.5 Moment diagram at mechanism ....................oociiii 48
4.6 Equilibrium method .............. ... 51
5.1 Comparison of moment-permanent rotation curves ...................... 58
5.2 Elevation, cross section and material properties of test specimen ...... 60
5.3 Overall view of the test setup .......................... .. 61
5.4 Features Characterizing the cross sectional behavior .................... 62
5.5 Web yielding under dead load test ......................................... 63
5.6 Load vs deflection curve ................ ... 64
5.7 Moment vs rotation curve .....................oci 64
5.8 Variation of the web depth in compression ............................... 66
5.9 Determination of web buckling .................................. ... 67
3.10 Determination of lateral-torsional buckling ............................... 68
5.11 Laterally buckled shape ............................ 68
9.12 Local buckling of compression flange ..................................... 69
5.13 M/Mp vs permanent rotation curve ......................cco 70
5.14 M/My vs permanent rotation curve ....................c..oiiiii 70
9.15 Lower bound curves ...................oii 71
5.16 Development of lower bound curve ........................................ 72



5.18 Automoments by beam line method ..................................... 74
6.1 Redistribution of moment in a continuous bridge ........................ 7
6.2 Prediction of descending part of the moment curvature curve .......... 80
6.3 Combined stiffness method ................................................ 81
6.4 Flow chart ... 82
7.1 Moment redistribution in a continuous beam with

an elastic-perfectly plastic section ........................ 85
7.2 Cross sections and material properties of the numerical example ...... 89
7.3 Idealized moment-curvature curves ................................. . 90
7.4 AASHTO HS 20 lane loading .............cccoouiieeei ] 92
7.5 Load deflection curve ....... e 93
7.6 Cross sectional behavior under negative bending loading ............... 94
7.7 Cross sectional behavior under positive bending loading ................ 94
7.8 Moment at ultimate load for ks and u =-1/60 .......................... 97
7.9 Moment at ultimate load for ks and u =-1/15 .......................... 98

7.10 Ultimate load vs ks for uniformly distributed load ..................... 100

7.11 Ultimate load vs ks for concentrated load ............................... 100

7.12 Determination of a first hinge load ..................................... 101

7.13 Moment at ultimate load for kn and u = -1/60 ........................ 102

7.14 Moment at ultimate load for kn and u = -1/15 ........................ 103

7.15 Ultimate load vs kn for uniformly distributed load .................... 105

7.16 Ultimate load vs kn for concentrated load .............................. 105
7.17 Moment at ultimate load for My/Mpc and u = -1/60 ................. 106
7.18 Moment at ultimate load for My/Mpc and u = -1/15 ................. 107

7.19 Ultimate load vs My/Mpc for uniformly distributed load ............. 108

7.20 Ultimate load vs My/Mpc for concentrated load ....................... 108
7.21 Moment at ultimate load for Mcr/Mu and u = -1/60

xiil



7.22 Moment at ultimate load for Mcr/Mu and u = -1/15 ................. 110

7.23 Ultimate load vs Mcr/Mu for uniformly distributed load ............. 112
7.24 Ultimate load vs Mcr/Mu for concentrated load ....................... 112
7.25 Ultimate load vs Mpc/Mu for uniformly distributed load ............. 114
7.26 First hinge load vs Mpc/Mu ..........ooooiiiii 114
8.1 Comparison of designed cross sections ................................... 120



CHAPTER ONE

INTRODUCTION

A composite plate girder consists of a concrete slab attached to a steel
plate girder through shear connectors. In the positive bending region where the
concrete slab is in compression, this composite system increases the stiffness
and ultimate strength of the section greatly reducing the weight of steel and
allowing longer span length for a given steel section. In the negative bending
region, the concrete slab which is in tension is assumed to be ineffective after
cracking and the reinforcing steel bars are considered to act compositely with
the steel section. Therefore, the benefits of composite action are reduced in the
negative moment region. Nevertheless, continuous composite plate girders are
the most common type of superstructure for long span steel bridges due to the

advantages in the positive bending region.

In the Load Factor Design (LFD) method of the American Association of
State Highway and Transportation Officials (AASHTO) Specifications[6], steel
bridges are designed based on elastic analyses. In the AASHTO Guide Specifi-
cations for Alternate Load-Factor Design Procedures[5], the ultimate load ca-
pacity of a continuous steel beam bridge is determined by the plastic-mechanism
method. However, this method applies only to compact sections. This research
is an analytical study of the ultimate load carrying capacity of continuous com-
posite plate girders with noncompact sections. Based on a parametric study of
the ultimate load capacity, a new design method is proposed. The scope of this
study is limited to laterally braced fully composite plate girders. Therefore,-
incomplete interaction between the concrete slab and the steel plate girder and

the limit state of lateral torsional buckling are not considered in this study.
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1.1 Ultimate Strength

An evaluation of the ultimate load carrying capacity of continuous compos-
ite plate girders is very important in providing adequate design criteria. Elastic
analysis can be used to evaluate the ultimate strength of continuous beams with
compact sections. In this procedure, the elastic moment diagram is adjusted
to indirectly account for moment redistribution beyond the elastic limit. In
the Allowable Stress Design of AISC Specifications[1] and Load Factor Design
of AASHTO Specifications[6], the maximum negative moment is reduced by
10% with a corresponding increase of positive moment before the sections are
designed. But this procedure may not reflect the true inelastic behavior and
ultimate strength. The ultimate capacity of a continuous beam bridge can be
determined by the simple plastic-mechanism method if the negative moment
section has sufficient rotation capacity at its plastic moment for a mechanism
to form. Fig.1.1 shows the collapse mechanism for a two span continuous beam
with an elastic-perfectly plastic moment-rotation relationship.

However, most plate girders have slender sections whose flange and web
slenderness ratios generally exceed the limiting values required for plastic de-
sign. The ultimate bending strength and the rotation capacity of these slender
sections are affected by local instabilities such as compression flange and/or
web buckling, which may cause premature failure. The ultimate load carrying
capacity of a continuous composite girder depends on the moment-curvature
characteristics of the positive and negative bending sections. Moment-curvature
relationship of a positive bending section is quite different from that of a neg-
ative bending section. The main features which affect the moment-curvature
characteristics of the positive bending section are steel section yielding and
concrete crushing. Concrete cracking, steel section yielding, and local buckling
are the major events determining the behavior in negative bending.

In this study, moment-curvature characteristics of positive and negative

bending sections of continuous composite plate girders were investigated using
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Figure 1.1 Plastic analysis of a continuous beam

experimental and analytical data. A nonlinear computer program was devel-
oped and used to calculate the ultimate load carrying capacity of continuous

composite plate girders with varying moment-curvature relationships for posi-

tive and negative bending sections.

1.2 Experimental Program

A composite plate girder with slender web was tested under negative bend-
ing moment. To improve the rotation capacity, the slenderness ratio of the
compression flange was reduced below the compact section limit. The proto-
type was a two-span continuous (200’ - 200) composite plate girder bridge with
13" — 0" transverse girder spacing. A linear scale factor of 1 /2 was used for the

cross sectional dimensions and the model length. The model was made of the
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same materials as the prototype. To simulate a composite section in negative
bending, the model was supported at the ends and loaded upward at the center.
Most composite beam bridges are built without shorings and the dead weight
of concrete is supported by the steel section only. To investigate the behavior
of an unshored composite girder, the steel plate girder was loaded up to a sim-
ulated dead load. With the steel girder held at that load, concrete was placed.

After the concrete slab cured, the composite girder was loaded to failure.

1.3 Development of Nonlinear Computer Program

To evaluate the ultimate loading capacity of a continuous composite plate
girder, redistribution of moments must be considered. Since the moment-
rotation curve of a negative bending section has a descending branch beyond its
maximum moment, moment redistrbution occurs through the interaction of the
descending curve of the negative section and the rising curve of the positive sec-
tion. To investigate the ultimate load capacity of continuous composite plate
girders, one-dimensional nonlinear program, NACB, was developed. To con-
sider the descending curve of the negative bending section and produce faster
convergence, the initial stiffness method, which is unconditionally convergent,
is combined with the tangential stiffness method at selective iterative intervals.
An incremental equilibrium approach is used in the numerical solution proce-
dure. For each increment of the applied load, the displacement is successively
corrected until the equilibrium position is obtained. The load at which the so-

lution does not converge is the ultimate load of the continuous composite plate

girder.

This report is composed of nine chapters. In chapter 2, moment-curvature
characteristics of composite girders in positive bending are evaluated numeri-

cally. In chapter 3, the nominal moment strength of noncomposite and com-
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posite plate girders is discussed. Currently used design methods are presented
in chapter 4. Experimental results are summarized in chapter 5. The nonlinear
computer program, NACB, is developed in chapter 6. In chapter 7, the ultimate
load carrying capacity of continuous composite girders is investigated varying
the moment-curvature characteristics of the positive and negative bending sec-
tions. The proposed design method is discussed and conclusions are presented

in chapter 8 and 9 respectively.



CHAPTER TWO

BEHAVIOR AND STRENGTH OF THE POSITIVE
BENDING SECTION

The moment-curvature relationships of composite plate girders in positive
bending are investigated using a numerical analysis method. The elements of
a composite plate girder section are the concrete slab, the reinforcing bars, the
structural steel and the shear connectors. In positive bending, the concrete
slab is in compression. A composite plate girder in positive bending may be
idealized as a steel plate girder to which a concrete cover plate is attached.
Most composite plate girders in positive bending have an unsymmetrical steel
section with a large bottom flange and a small top flange for better efficiency.
The concrete cover plate shifts the elastic neutral axis close to the concrete
slab reducing the web depth in compression. Therefore, a composite plate
girder with a slender web can reach its ultimate bending moment without web
instability problems.

Reinforcing bars are not considered in the analyses because the effect on
the cross sectional behavior and ultimate strength is insignificant in positive
bending. No shear deformation between the concrete slab and the steel girder

is considered in this study.

2.1. Materials

2.1.1 Stress-strain relationship of concrete

Hognestad’s stress-strain curve for concrete in compression[7] is used for
the concrete slab. This curve is composed of a parabolic ascending part and a

straight descending part as shown in Fig.2.1. The tensile strength of concrete is

6
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relatively small compared with the compressive strength and the tensile stress-
strain relationship is represented as a straight line up to the modulus of rupture,
fr. After cracking, concrete is assumed to have no tensile strength. The initial

modulus of elasticity, E., is taken as 1,800,000 -+ 500" psi.

c

2.1.2 Stress-strain relationship of structural steel

A typical tensile stress-strain curve of structural steel is illustrated in
Fig.2.2. The main features characterizing this stress-strain curve are as fol-
lows:

a) linear elastic region up to the yield strain, e,;
b) yield plateau region up to the strain hardening strain, ¢, ;
c) strain hardening region up to the ultimate strain, ey ;

d) ultimate plateau region up to the failure strain, ¢; ;

2.2 Plastic Bending Moment

The plastic bending moment of a composite plate girder can be easily cal-
culated by assuming a fully plastic state of stress for both concrete and steel.
Two different stress distributions are possible corresponding to the different
position of the plastic neutral axis as shown in Fig. 2.3. The plastic bending
moment is not affected by the construction methods.

The 1983 AASHTO specification[6] limits the bending capacity of a com-
posite girder to its first yield moment, M,, when the web slenderness ratio
exceeded the compact section limit. But test results show that composite plate
girders with very slender webs can develop the plastic bending moment, A,

in positive bending because the concrete slab shifts the neutral axis upward

reducing the web area in compression.
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2.3 Moment-Curvature Analysis

The moment-curvature curve of a cross section can be obtained using an
iteration process. The cross section is idealized as a set of uniform layers as
shown in Fig.2.4. The flange layers are further subdivided into a number of
segments in order to model the variation in residual stresses along the width
of the flange. For a given strain at the top extreme fiber, the stress of each
layer is determined from the stress-strain curves for the concrete and structural
steel. A linear strain distribution across the cross section is used assuming
that a plane section remains plane during bending. Several iterations are made
until the horizontal equilibrium of internal forces is obtained by varying the
location of the neutral axis. The curvature is obtained as the strain at the
top fiber divided by the distance between the top fiber and the neutral axis.
The corresponding moment is obtained by summing the contributions of all the

layers of the cross section.
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2.3.1 Moment-curvature relationship

The behavior of a composite plate girder in positive bending is linear-elastic
until the bottom flange starts to yield. As the yielding progresses, the neutral
axis moves upward and the bending stiffness of the cross section is gradually
reduced. The ultimate bending capacity is determined either by the concrete
crushing or by the fracture of the structural steel. In most composite plate
girders, concrete crushing occurs first. When the strain at the top surface of
the concrete slab reaches an assumed limiting value of 0.0035, the composite
plate girder is considered to fail by crushing of the concrete slab. The moment-
curvature characteristics of a composite plate girder depend on many param-
eters such as material strength, cross sectional dimension, residual stresses,
and the construction method. The effects of these parameters on the moment-
curvature relationship were investigated in the analysis. Fig. 2.5 shows the
cross section and material properties of the basic model used in the analysis.

The variations in the above-mentioned parameters are summarized in Table
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Figure 2.5 Girder dimensions and material properties

of analytical model

2.1. In this table, M,, M,, and D, were calculated using the cross sectional

properties and M, ¢,, and D, were obtained in the analysis.

2.3.2 Concrete strength and crushing strain

High strength concrete did not increase the plastic moment greatly be-
cause the compressive force in the concrete slab could not exceed the full yield
strength of the steel plate girder. High strength concrete shifted the plastic
neutral axis upwards producing larger strain in steel section. Therefore, the
ductility was increased in the strain hardening range with a consequent in-
crease in the ultimate moment as shown in Fig. 2.6. To see the effect of
conctete crushing strain, e,, three different values of e, were used with the

same concrete strength of 4000 psi. As can be seen in Fig. 2.7, an increase in
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the concrete crushing strain allowed larger curvature increasing the ductility

and the ultimate moment capacity, but the difference was insignificant.

2.3.3 Steel yield stress

While high yield stress increased the plastic moment greatly, the ductil-
ity was reduced as shown in Fig. 2.8. To see the effect of steel yield stress
on the moment-curvature characteristics, the moment-curvature curves were
nondimensionalized by the plastic moment and the plastic curvature as shown
in Fig. 2.9. This figure shows that yield stress had little effect on the moment-
curvature characteristics. Lower yield stress increased fhe ductility due to the
upward shift of the plastic neutral axis. The higher neutral axis produced larger
curvature at failure. The ultimate stress, F,, of 98, 65, and 80 ksi was used for

material with the yield stress of 36, 50, and 65 ksi respectively. Same E,, E,,,

and e; values were used.

30000 -
&
& 20000 -
&
=
5]
E
(=]
= 10000 -
O i ) 1 ¥ 1 1
0 10 20 30 40 50

Curvature ( *10™ /in.)

Figure 2.8 Effect of steel yield stress
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Figure 2.9 Effect of steel yield stress in a nondimensional form

2.3.4 Slab dimension

An increase in slab width had little effect on the plastic moment but in-
creases the ductility with a consequent increase in the ultimate moment as can
be seen in Fig. 2.10. An increase in slab thickness increased the plastic moment
a little, but the difference was insignificant as shown in Fig. 2.11. The ductility
was affected little by the slab thickness. The ratio of the yield moment to the

plastic moment ranged from 0.80 to 0.81.

2.3.5 Residual Stresses

Most welded plate girders are fabricated from flame-cut plates. The mag-
nitude and distribution of residual stresses in a welded shape are quite different
from those in a rolled shape. The residual stress distribution in a welded shape

[8] was idealized in the analysis as shown in Fig. 2.12. As shown in Fig. 2.13,
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Figure 2.12 Typical and idealized residual stress patterns

a cross section starts to yield at an early stage of loading due to the high ten-
sile residual stress in the tension flange. But the effect of residual stress on
the moment-curvature characteristics is minor because the high tensile residual

stress is confined to a small area.

2.3.6 Construction method

If a bridge is not shored during construction, the dead weight of concrete is
supported by the steel section only, and any additional dead load plus live load
are supported by the composite section once the concrete has cured. Significant

stresses exist in the steel section before the bridge acts compositely. Therefore,
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Figure 2.13 Effect of residual stress

an unshored composite section suffers earlier yielding than a shored composite
section. The moment-curvature curves with three different ratios of dead load
moment to plastic moment, My/M,, are shown in Fig. 2.14. When the ratio
was increased from 0.0 to 0.3, the yield moment, M,, was reduced from 0.80M,

to 0.7M,.

To see the effect of unshored construction, the curves for the unshored sec-
tions were shifted horizontally to meet the curve for the shored section at the
dead load moments as shown in Fig. 2.15. In this figure, moment-curvature
curves for the noncomposite steel sections were not shown. Larger dead load
moment causes earlier yielding of the bottom flange and earlier departure from
the linear elastic portion of the moment-curvature curve. The difference be-
tween the curves is reduced as the moment approaches the plastic moment,

which is not affected by the construction method. Ductility is increased as the



25000 1
20000 -
3
w
(=9
‘T 15000 -
= —&—  Md/Mp = 0.0
=
g 10000 - —&— Md/MP=02
(@] -
S —O0— Md/Mp=03
5000
0 T T T Y T T T T T 1
0 10 20 30 40 50
Curvature ( *10 /in.)
Figure 2.14 Effect of construction method
25000 -
N
Z
=
:
S
=

0 T T T I T T T
0 10 20 30 40

Curvature (*10™ /in.)

Figure 2.15 Comparison of composite actions
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dead load moment ratio is increased because the earlier yielding of the bottom

flange due to the higher dead load shifts the neutral axis further upwards.

2.3.7 Comparison with test results

Analytical moment-curvature curves were compared with experimental
curves for composite plate girders tested by Vasseghi and Frank[9] in Fig. 2.16.
The cross sections and material properties of Girder 1 and 2 are described in
Table 2.2. In the test, Girder 1 was a shored composite girder. For Girder 2
which was tested as an unshored composite girder, a comparison was done for -
the composite loading. The noncomposite dead load moment of Girder 2 was
about 20% of the plastic moment of the composite section. As can be seen in

this figure, analytical and experimental results were in good agreement.

Table 2.2 Dimensions and material properties of G1 and G2

Specimens Slab Top Flange Web Bottom Flange
Gl 4.5 %425 0.50 % 10.0 0.257 % 40.0 1.010 * 16.0
' =6200psi | f, =46.0ksi | f, = 49.0ksi fy = 48.0ksi
G2 7.5%47.0 0.50 % 10.0 0.3195 x 40.0 1.005 = 16.0
f =5T00psi | f, =46.0ksi | f, =42.0ksi |  f, = 48.8ksi

2.4 Summary of Results

1. Concrete strength had little effect on the moment-curvature characteris-
tics. An increase in steel yield stress increased the plastic moment greatly, but

the effect on the moment-curvature characteristics is insignificant.
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Figure 2.16 Comparison with test results

2. The change in slab dimension had little effect on the moment-curvature

characteristics. The ratio of the yield moment to the plastic moment ranged
from 0.8 to 0.82.

3. In composite sections with unshored construction, the noncomposite
dead load caused early yielding and increased the curvature considerably there-
after. When the noncomposite dead load moment was increased from 0 to
0.3M,, the yield moment was reduced from 0.81M, to 0.7M,.

4. High tensile residual stress in the tension flange caused yielding right
after the load was applied, but the departure from elastic behavior was insignif-
icant.

5. All the curves obtained in this analysis are nondimensionalized and
shown in Fig. 2.17. The dotted curve is the elastic-perfectly plastic moment-

curvature curve which provides the upper bound. The yield moment of the
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Figure 2.17 Upper and lower bounds

dashed curve is 0.7, and the inelastic stiffness is 1/20 of the elastic stiffness.
These values are selected arbitrarily to provide a conservative lower bound.
These upper and lower bound curves are used in the ultimate strength analysis

of continuous composite plate girders in chapter 7.



CHAPTER THREE

BEHAVIOR AND STRENGTH OF THE NEGATIVE
BENDING SECTION

The concrete slab of a composite plate girder in negative bending is sub-
jected to tensile stress. When the applied moment exceeds the cracking mo-
ment, the concrete slab cracks and the stiffness of the cross section is reduced
considerably. Therefore, negative bending sections of continuous composite
plate girders have been traditionally designed as noncomposite sections ignor-
ing the effects of the concrete slab and the reinforcing bars. Actually, however,
the cracked concrete slab can transfer the longitudinal force in the reinforcing
bars to the plate girder through the shear studs and the composite action be-
tween the reinforcing bars and the plate girder exists in the negative bending

section.

3.1 Ultimate Bending Capacity

The concrete slab is assumed to carry no tensile stress after cracking. Thus,
the plastic moment of a composite plate girder in negative bending is computed
from the resultant moment of the fully yielded stress distribution of the steel
section including the reinforcing steel bars as shown in Fig. 3.1.

The ultimate bending strength of an unbraced composite plate girder in
negative bending is determined by the lateral torsional buckling and/or local
buckling. Since this study is limited to the laterally braced girders, the limit
state of lateral torsional buckling is not considered. Most plate girders have very
slender webs and the reinforcing steel bars shift the neutral axis increasing the

web area in compression. Therefore, the ultimate bending strength is affected

23
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Figure 3.1 Plastic stress distribution for negative bending

by local instabilities such as web and/or compression flange buckling, which

may cause premature failure before the section reaches its plastic moment.

3.2 Moment-Rotation Relationship

Typical moment-rotation curves of laterally braced beams are shown in
Fig.3.2. In this figure, R represents the rotation capacity. Rotation capacity
of 3.0 is sufficient for a mechanism to develop in practical structures. The
cross sections can be classified into three ranges by their moment rotation
characteristics[10].

1) A compact section has the ability to exceed the plastic moment and
provide sufficient rotation capacity at that moment for a plastic mechanism to
form (R > 3).

2) A noncompact section can reach the yield moment.
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Figure 3.2 Generalized beam behavior

3) A slender section can not reach the yield moment because local buckling

of the web and/or the compression flange occurs before the extreme fiber reaches

the yield strain.
The ability of a cross section to reach these levels depends mainly on its
compression flange and web slenderness ratios. The web slenderness ratio of an

unsymmetrical section is defined as twice the depth of the web in compression

divided by the web thickness.

3.3 Plate Buckling Strength

Beams and plate girders are composed of plate elements. The theoretical

elastic buckling stress for a rectangular plate is represented by the following

formula:
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kn?E
T = ma eyere D

where k is a buckling coefficient depending on type of edge stress and bound-
ary conditions; E is the modulus of elasticity, u is Poisson’s ratio, and b /t is
the width-to-thickness ratio. The values of k which can be used to develop the

slenderness ratio limits are listed in Table 3.1[11].

3.3.1 Width/thickness ratio for compression flanges

The buckling strength of a plate element in edge compression may be rep-
resented in a dimensionless form as shown in Fig. 3.3[12]. For a compression
element to reach its yield stress without local buckling, the value of Eq. 3.1
must be equal to the yield stress, Fy. This is the intersection of the elastic
buckling curve and the yield stress line, which is represented by point A at A
= 1.0 in Fig. 3.3. Using A, = 1.0 gives for b/t

where F, is in ksi. Since plate elements have residual stress and imperfections,

b
t

the actual strength is represented by a transition curve which deviates from the
elastic buckling curve at A, which is. greater than 1.0.

In the 1986 AISC LRFD Specification[2], the compressive residual stress in
the compression flange, F,, is deducted from F, under the root sign to consider
the effect of residual stresses. To account for the restraint provided by the web,
k = 0.76 ( about halfway between case (a) and (b) in Table 3.1 ) is selected
as a buckling coefficient for rolled sections. Using this k value and F. = 10 ksi

gives the width/thickness limit for noncompact rolled sections as

141
_ 4 (3.3)
T, - 10

o~ o~
i



Table 3.1 Plate buckling coefficient k
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CASE BOUNDARY CONDITION* STRESS TYPE k
S.§
(a) ? compression 0.425
free
fixed
(b) ; compression 1.277
free
8.8 ) compression 78
(c) + bending :
8.8
fixed ) compression
@ ? + bending 13.6
fixed
8.8 £
(e) bending 23.9
S.8
§ —7
fixed
0 bending 39.6
fixed

)

* Loaded edges are simply supported
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Figure 3.3 Plate buckling strength in edge compression

where b is half the full nominal flange width.
For welded sections, k = 0.43 which is the limiting case (a) in Table 3.1
for no web restraint is used based on Johnson’s test[13]. Thus, the slenderness

ratio limit for noncompact welded sections is

106 (3.4)
-~ JF,-165 ’ '

where compressive residual stress for welded sections of 16.5 ksi was deducted

b
t

from F,. Eq. 3.3 and Eq. 3.4 are used as the slenderness ratio limits for
noncompact sections in the AISC LRFD Specification (Table A-F1.1).

In the AISC LRFD Specification, a section whose slenderness ratio is equal
to the noncompact section limit can reach its maximum elastic moment, M, =
So(Fys — F;), where Fy; is the yield stress of the compression flange and S, is the
section modulus. In the 1990 AASHTO Interim Specifications[4], a noncompact
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section is defined as a section which can reach its yield moment, M, = S, F,,. For
a section to reach its yield moment, a reduced value of b/t should be used as can
be seen in Fig. 3.3. The following equation is used as the limit for noncompact

sections in the 1990 AASHTO Interim Specifications (formula 10-98)

< 69.5

o~ o~

3

(3.5)

For F, = 36 ksi, Eq. 3.4 and Eq. 3.5 give b/t = 24.0 and 11.6 respectively.
For Fy = 50 ksi, Eq. 3.4 gives b/t = 18.3 and Eq. 3.5 gives b/t = 9.8.

For plastic design, the compression flange must achieve sufficient deforma-
- tion at yield stress without local buckling. The 1978 AISC Specification[3] used
a very severe restriction reducing A, to Ay (= 0.46 for unstiffened compression
elements) for plastic design. A buckling coefficient of k = 0.42, case (a) in Table
3.1, was used because a yielded web was assumed to provide no restraint. From

these values, the width/thickness ratio is obtained as

% (3.6)
This equation was used as the slenderness ratio limit for plastic design sec-
tions in Part 2 of the 1978 AISC Specification (Section 2.7) and for compact
sections in the 1983 AASHTO Specifications[6] (formula 10-92). The term “ul-

tracompact section” was introduced in the literature[27] and used to name the

b
-<
7=

compression flange sections which satisfy the requirement of Eq. 3.6.

Lukey and Adams performed experiments to investigate the relationship
between the flange slenderness ratio and the rotation capacity of wide-flange
beams under a moment gradient[15]. The rotation capacity R (as shown in
Fig. 3.2) becomes greater than 3 which is considered to be a sufficient value

for plastic design, when

o~ o~
(=2
[

3

INA

(3.7)
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This equation is used as the slenderness ratio limit for compact sections in
the AISC LRFD Specification (Table A-F1.1) and the 1990 AASHTO Interim
Specifications (formula 10-92).

3.3.2 Width/thickness ratio for webs

To make the cross section of a beam more efficient, the flange area is in-
creased and the web thickness is minimized. As a result, the web becomes
very slender and may buckle elastically before the yield strength is reached.
The elastic bend buckling strength of a web can be calculated using Eq. 3.1.
To avoid elastic local Wbuckling, Eq. 3.1 must be equal to the yield stress, F,.
Selecting 36.2 as a k value arbitrarily between case (e) and (f), 80% of the
difference toward the fully fixed case (f), gives

970
Fyf

2 < (38)
where h, is the clear distance between flanges for a symmetrical section and
twice the web depth in compression for an unsymmetrical section. Eq. 3.8 is
used as the web slenderness ratio limit for noncompact sections in the AISC
LRFD Specification (Table A-F 1.1) and the 1990 AASHTO Interim Specifica-
tions (formula 10-99).

When the web slenderness ratio exceeds the limit of Eq. 3.8, some of the
web area in compression is not fully effective after buckling. But the web still
has some post-buckling strength and the stress is redistributed across the cross
section increasing the stress in the compression flange as shown in Fig. 3.4. To
allow for the strength reduction of the cross section due to the web buckling,
the AISC LRFD Specification (A-G2-3) and the 1990 AASHTO Interim Speci-
fications (formula 10-102b) use a strength reduction factor proposed by Basler
and Thurlimann[16],
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experiment
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st beam theory

Figure 3.4 Stress distribution for a plate girder with a slender web

R =1-0.0005a, he — 9,__70 <1.0 3.9
tw FCT

where a, is the ratio of the web area to the compression flange area in the
AISC LRFD Specification and the ratio of twice the web area in compression
to the compression flange area in the AASHTO Specifications. F., is the critical
compression flange stress. In Eq. 3.9, 0.0005a, is a simplified form for plate
girders with a, < 2.0. Yura recommended to replace 0.0005q¢, with a more
general equation by Basler and Thurlimann(16], ¢, / (1200 + 300a,), for plate
girders with a, < 10.0.

Della Croce conducted tests on eight continuous welded girders with unstiff-
ened webs[15]. Based on the test data, the ASIC LRFD Specification (Table

A-F1.1) adopted the web slenderness ratio limit for compact sections as

h 640

tw Fys
Th web slenderness ratio limit for compact sections in the 1990 AASHTO

(3.10)

Interim Specifications (formula 10-93) is also based on this equation.
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Grubb and Carskaddan suggested the following interaction equation to re-
define the allowable limits when both the flange and web slenderness ratios

exceed 75% of the limits for compact sections[16].

33650
v Fyf

where Fy; is in psi. This interaction equation is used in the 1990 AASHTO

fi +9.35($) < (3.11)

Interim Specifications (formula 10-94). However, some sections in the tests

by Holtz and Kulak reached their plastic moments without any interaction
effect[19].

3.4 Nominal Flexural Strength

Based on the slenderness ratio limits developed in the previous sections,
the ASIC LRFD Specification determines the nominal flexural strength. The
variation in the nominal flexural strength with the flange or web slenderness
ratio is shown in Fig. 3.5 for beams. For beams, two separate equations (Eq.3.3
and Eq.3.4) are used to define the flange slenderness ratio limit for noncompact
sections, )., depending on the type of construction. The two equations were
derived using two different k values in Eq. 3.2. For rolled sections, a buckling
coeflicient k = 0.76 was arbitrarily selected to be about halfway between k =
0.425 (no web restraint) and k = 1.277 (fixed restraint). For welded sections,
k = 0.43 was used. When the flange slenderness ratio exceeds the noncompact
section limit, the nominal flexural strength is obtained from the elastic buckling
equation (Eq. 3.1) with k = 0.76 for rolled sections and k — 0.43 for welded
sections.

However, the theoretical plate buckling analysis does not consider the type
of construction and Johnson’s tests show that the restraining effect of the web

varies with the slenderness ratio h/t[13]. Thus, using k = 0.43 for a welded
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section with a stocky web would reduce the resistance unjustifiably and using

= 0.76 for a rolled section with a slender web would give unconservative
results by the current AISC LRFD approach. Therefore, Yura recommended
an approach that accounts directly for the restraining effect of the web based

on Johnson’s tests[14]. In his recommendation, A, is calculated as follows,

N 162

Y E R @12

970

4
k= — <0.763 and R/t < —= (3.13)
N VI,

In the AISC LRFD Specification, plate girders are distinguished from beams
based on the web slenderness ratio. For plate girders, whose web slenderness
ratio is greater than the noncompact section limit of Eq. 3.8, different provisions
shall apply for design flexural strength. Fig. 3.6 shows the variation in the
critical stress with the flange slenderness ratio for plate girders. The maximum
flange stress of a plate girder is limited to the yvield stress, F,, because web
buckling occurs before the yield stress in the flange is reached. When the
flange slenderness ratio exceeds the noncompact section limit, the critical stress
is obtained using the elastic buckling equation (Eq. 3.1) with k = 0.43. The
flexural strength obtained from the relationship in Fig. 3.6 is reduced by the

reduction factor of Eq. 3.9 to get the nominal flexural strength.

In the 1990 AASHTO Interim Specifications, the variation in the nominal
flexural strength with the flange or web slenderness ratio is determined as shown
in Fig. 3.7. The lower value controls. The AASHTO Specifications do not have
any provisions to apply for design flexural strength when the compression flange
slenderness ratio, b/t, exceeds the noncompact section limit. If the maximum
moment a beam is subjected to, M, is less than the yield moment, M,, b/t

may be increased by the ratio VMy/M. When the slenderness ratio of a web
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exceeds the noncompact section limit, longitudinal stiffeners shall be required,
or the nominal flexural strength is reduced by the reduction factor of Eq. 3.9

to account for the bend-buckling effect of the slender web.

3.5 The Q formula

To evaluate the nominal moment strength of composite and non-composite
plate girders, Frank developed the Q formula in the proposed AASHTO LRFD
Bridge Sspecifications based on Johnson’s test data[20]. The factor @, which
is the ratio of the plate buckling stress to the yield stress of the compression

flange, may be expressed as

_ kmiE
= (1= )T,

where the buckling coeflicient, k, is given as a function of the web slenderness

Q

(3.14)

ratio to account for the restraining effect of the web,

4.92
b= —25 3.15
i (3.15)

Substituting Eq. 3.15 into Eq. 3.14 gives

1.29 + 108
M? A2 Fy

Q= (3.16)

where, ‘

Aw = web slenderness ratio = 2Dy [ty
Dy = web depth in compression at plastic moment
tw = web thickness

A; = flange slenderness ratio = by /2t

by = total width of compression flange

ty = thickness of compression flange

Fy; = yield stress of compression flange in psi
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For a section to reach its plastic moment capacity, M,, Q@ must exceed Q,,

Qp =547f—3.13 (3.17)

where,
f = shape factor for noncomposite section
= M,/M,. for composite section
My. = yield moment calculated considering sequence of loading
The nominal moment strength can be obtained in three categories:
(1) plastic moment is reached;
For @ > @y,
M, = M, (3.18)

(2) nominal strength occurs in the inelastic range;

For @, > @ > 0.7,

My, =Mp— (Mp - 0-7My)[(Qp - Q)/(Qp - 0‘7)] (3-19)

(3) nominal strength is equal to the elastic buckling strength;
For @ < 0.7,
M, = Q]ny (320)

The variation in the nominal moment strength with the Q value is shown in
Fig. 3.8. The @ formula calculates the ultimate moment capacity only. When
Q exceeds Q,, the plastic moment can be reached. But it does not mean that
the section can necessarily provide sufficient rotation capacity at the plastic
moment.

The nominal moment strengths predicted by the @ formula were compared
with the experimental strengths for 29 test specimens(13],[19],[26],[27]. The
histogram of the ratio of the predicted strength to the experimental strength is

shown in Fig. 3.9. The average was 0.97 and the standard deviation was 0.06.
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3.6 Modification of The Q formula

The value of @ (Eq. 3.16) increases greatly as the flange slenderness ratio
is reduced. A section with an ultracompact compression flange may reach its
plastic moment by the Q formula even if the web is very slender. Actually,
however, Fig. 3.3 shows that the plate buckling strength is not affected signif-
icantly by b/t as the buckling strength approaches the yield stress. Therefore,
the @ formula may give unconservative results for sections with very stocky
compression flanges.

In the Q@ formula, the moment strength of an unsymmetrical section (in
which the compression flange is smaller) is smaller than that of a symmetric
section at the same Q value because the high shape factor of the unsymmetrical
section increases the @, value (Eq. 3.17). A larger amount of plastic strain is
necessary at the compression flange for an unsymmetric section to achieve the
plastic moment. Fig. 3.10 shows the moment in terms of the strain at the
compression flange for two sections with different shape factors. The unsym-
metrical section with a shape factor of 1.4 started to yield at a low value of
0.71M,, but it could reach up to 0.97M, and 0.99M, at a flange strain of 3¢,
and 5e, respectively. Since a compact compression flange can achieve a plastic
strain of 7-9,, an unsymmetrical section with a high shape factor may reach
its plastic moment if A s and ), are equal to the compact section limits.

Based on the preceding discussions, the original @ formula can be modified
as follows:

1. The flange compact section limit of Eq. 3.7 is used for ); in Eq. 3.16 when
the flange slenderness ratio is less than the compact section limit,.

2. When the compact section limits of Eq. 3.7 and Eq. 3.10 are used for A P
and Ay in Eq.3.16, the value of Q is 3. Therefore, M, (= fM,) can be reached
at @ = 3.0 for both symmetrical and unsymmetrical sections.

3. When the nominal flexural strength is less than the yield moment (or @ is

less than 2.34), both unsymmetrical and symmetrical sections are assumed
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Figure 3.10 Moment vs strain at compression flange curve

to have the same nominal strength at the same @ value.

The nominal moment strength can be obtained in four categories:

(1) For @ > 3.0,

M, = M, (3.21)

(2) For 3.0 > @ > 2.34,
M, = Mp — 1.52(M, — M,)(3.0 — Q) (3.22)

(3) For 2.34 > @ > 0.7,
M, = M;(0.58 +0.18Q) (3.23)

(4) For @ < 0.7,
M, = QM, (3.24)
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Figure 3.11 Nominal moment strength vs Q value
of the modified Q formula

The nominal moment strength vs @ value curve for the modified @ formula is
shown in Fig. 3.11.

The nominal moment strength obtained by the original and modified @
formulas are compared with experimental strengths for 8 test specimens in Ta-
ble 3.2 and Fig. 3.12. Three specimens(13],[27] had ultracompact compression
flanges and five specimens|19],[26] had high shape factors. As shown in Table
3.2, the original Q formula gave unconservative results for sections with ul-
tracompact compression flanges (Girder D and 8) and conservative results for
sections with high shape factors (Girder WS-2,3.4). The modified @ formula
gave a better estimate as shown in Fig. 3.12. Both the original and modified Q
formulas gave the same values for Girder UL and US despite high shape factors

because the nominal moment strength was less than the yield moment.
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Table 3.2 Comparision of the modified Q formula with the original Q formula

Ref. Test by / 2% 2D, /1 F Shape Meese My / Mg
No [Girder " F¥t IFactor | M, | Original Q | Modified
27| M | 660 ) 1173 5893 | 1.11 | 1.02 0.98 0.96
D 6.56 153.5 | 58.87 1.13 0.9 1.11 1.01
131 g 7.07 |1 1976 5368 | 1.11 | 0.91 1.10 0.96
WS-21 967 | 999 | 46.79 | 121 | 1.01 0.91 0.98
19 |WS-3| 967 | 1199|4684 | 123 | 093 | 004 0.98
WS-41 967 | 1400 4682 | 124 | 089 | 093 0.96
US | 9.03 | 1595/ 5937 | 147 | 065 1.00 1.00
26 'O [ 915 | 1583 | 5832 126 | 0.79 | 096 0.96
1.2
1.1- A A
3
g INOE, GREEL EELEETT R PEr B e .
= o @ B modified Q
E m B 2] a . .
a A original Q
0.9 A
0.8 T T T T T T
2.0 22 24 2.6 2.8 3.0
Q

Figure 3.12 Comparison of the modified Q formula
with the original Q formula



CHAPTER FOUR

REVIEW OF DESIGN AND ANALYSIS METHODS
OF COMPOSITE GIRDER BRIDGES

For the design of composite and noncomposite plate girder bridges, the
AASHTO Specifications coﬁtain Working Stress Design (WSD) and Load Fac-
tor Design (LFD) procedures. The LFD procedure has been extended by in-
cluding Autostress Design concepts[21] in the Guide Specifications for Alternate
Load Factor Design (ALFD) Procedures for Steel Beam Bridges Using Braced
Compact Sections[5].

4.1 Load Levels and Performance Requirements

The AASHTO Specifications specify three levels of loading, i.e., Service
Load, Overload and Maximum Load. In the LFD and ALFD methods, a bridge
is designed to assure satisfactory structural performances at these three load
levels. These load levels and the corresponding performance conditions are
listed in Table 4.1. Service Load includes nominal dead load plus live load
of standard vehicles. Adequate fatigue life, acceptable live load deflection,
and limited concrete cracking are performance requirements at this load level.
Overload consists of nominal dead load plus live load of overload vehicles which
weigh approximately 5/3 times the standard vehicles. The Overload check is
intended to control permanent deflections that could create objectionable riding
quality. Maximum load which is 1.3 times Overload consists of increased dead
load plus exceptionally heavy vehicles. The bridge is required to have adequate
strength to resist this Maximum Load. The design requirements of the LFD

method are summarized in the third column of Table 4.1.
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Table 4.1. Load levels and performance conditions (LFD method)

Performance Design
Loading Conditions Requirements
Service Load fatigue life limit stress range
DL +LL live load deflection L /800
Over Load objectionable composite 0.95My
DL +1.67LL permanent deformation  noncomposite 0.80My
Maximum Load collapse compact Mp
L3(DL +1.67 LL) noncompact My

4.2 Alternate Load Factor Design Method

Both the LFD and ALFD methods use the same design requirements at
Service Load. At Overload, the LFD method limits the elastic maximum posi-
tive and negative moments to some fraction of the yield moments. For compact
sections, the elastic maximum negative moment may be redistributed by a max-
imum of 10% before the comparison is made. The load distribution patterns
which produce the maximum positive and negative moments are shown in Fig.
4.1. In contrast, the ALFD method places no limit on the negative moment
by allowing a continuous-span bridge to adjust automatically the shake-down
due to the local yielding and/or concrete cracking over the interior pier. Fig.
4.2 shows a set of self-equilibrating residual forces and automoments which
are induced during the shake-down process and remain after the Overload is
removed.

The automoments can be computed using a beam-line method based on the
experimental moment-permanent rotation curve of the pier section as shown in

Fig. 4.3. In this figure, Point A is the elastic Overload moment at the pier.
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Fig. 4.1 Load distribution patterns

Point B is the slope change at the pier caused by the Overload assuming a
free hinge at the pier. The line which connects Point A and B is the beam
line. Point C is the intersection of the beam line and the experimental curve.
This point represents the actual Overload moment and the permanent rotation
at the pier. The difference between the elastic Overload moment (Point A)
and the actual Overload moment (Point C) is the automoment at the pier.
Under subsequent unloading and reloading of the Overload live load, the pier
section remains elastic on the line CD as long as the load does not exceed the
initial Overload. A typical moment-rotation curve obtained from test data[23]
is used to determine the automoments for composite sections in the AASHTO
Guide Specifications. The maximum positive moment plus any corresponding

automoment is limited to the same design requirements as in the LFD method.

At Maximum Load, the LFD method limits the elastic maximum moment to
the plastic moment for compact sections and to the yield moment for noncom-

pact sections. For compact sections, 10% redistribution of the elastic maximum
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negative moment is allowed. The ALFD method calculates the ultimate load
capacity of a continuous bridge using the plastic mechanism method. For plas-
tic design, a considerable amount of plastic rotation is required at the interior
support, which can be provided by specifying the flange and web slenderness
ratios and lateral bracing requirements. In the Guide Specifications, a com-
pact section is defined as a section which can reach its plastic moment with a
limited rotation capacity. Instead of using those sections with specified slender-
ness ratios for plastic des1gn the ALFD method determines an effective plastlc
moment, M., at which enough plastic rotation is provided as shown in Fig.
4.4. In this method, the ultimate capacity is assumed to be reached when the
positive bending section reaches the plastic moment. The moment diagram at
the mechanism is shown in F 1g. 4.5. The capacity calculated by the ALFD
method is usually much larger than that by the LFD procedures.

The main advantage of the ALFD method is that it predicts the actual
behavior of continuous-span bridges more accurately and provides much greater
flexibility in selecting negative bending sections and more economical design
than the present LFD procedure. Even with these benefits, however, the ALFD

method needs further improvements in the design procedures for the following

reasons:

1. Using the concept of an effective plastic moment at the Maximum Load
check gives conservative results because the required rotation capacity at the
pier is generally much smaller than the provided rotation capacity at the effec-

tive plastic moment[22].

2. The typical moment-rotation curve used to calculate the automoments
for composite sections is based on a single component test for shored construc-
tion[23]. Most composite bridges are built without shores. And no experimental

data are available on composite sections for unshored construction.

3. Presently, the ALFD method applies only to bridges with compact sec-
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tions. To extend this method to noncompact section bridges, more tests need
to be performed for better understanding of the moment-rotation behavior of

noncompact sections.

4.3 Compact Section Design Method

The results of research conducted at UT Austin[9] have shown that typical
composite plate girders can reach their plastic moment capacities in the positive
moment region due to the small web depth in compression. However, the
use of the plastic moment capacity is limited to simple span bridge design
because the moment-rotation behavior of negative moment sections is not well
known. To use the plastic moment capacity of a positive moment section in the
design of a continuous composite plate girder bridge, Vasseghi proposed a design
method which uses a compact section in the negative bending region[24]. To
satisfy the requirements for compact sections, the pier section is proportioned
as an unsymmetrical cross section with a much larger compression flange which

reduces the web depth in compression.

But unsymmetrical sections are susceptible to fatigue cracking due to high
tensile stress at Service Load. This problem can be avoided by prestressing
the concrete slab in the negative bending region to control the tensile stress.
Vasseghi compared his method with the LFD and ASD methods by designing
a continuous bridge using the three different design methods. The saving in
the in-place costs was not significant but his method improved the structural
performance greatly. In this method, the ultimate load capacity is easily cal-
culated by the plastic mechanism method using the plastic moment capacities

of the positive and negative bending sections.
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4.4 Equilibrium Method

To design a continuous-span bridge using the plastic moment capacity of a
positive moment section, Frank and Grubb proposed an Equilibrium Method
which does not require the knowledge of the moment-rotation behaviors of a
negative moment section[25]. In a design of a continuous-span bridge, different
loading patterns are used to calculate the maximum positive and maximum
negative moments as shown in Fig. 4.1. In the elastic range, the negative
moment at the pier produced by the positive moment loading of Fig. 4.1(a) is
less than that by the negative moment loading of Fig. 4.1(b). If the maximum
positive moment by the positive moment loading exceeds the yield moment
of the positive bending section, moment redistribution occurs increasing the
negative moment at the pier. The amount of the increase in the pier moment
depends on the inelastic stiffness of the positive bending section. The largest
increase occurs when the inelastic stiffness of the positive section is zero after

the yield moment.

In the Equilibrium Method, the pier section is designed to resist the elastic
maximum negative moment by the negative moment loading and the positive
bending section is designed to resist the elastic maximum positive moment by
the positive moment loading using its plastic moment capacity. Fig. 4.6 shows
the elastic moment diagram for the positive moment loading. The dashed curve
is the moment diagram after the redistribution of moment when the inelastic
stiffness of the positive section is zero. The pier moment by the positive moment
loading, M,, is increased by M, which is the difference between the plastic
moment, M,, and the yield moment, My, of the positive section. As long as
the increased pier moment, M, + §M, is less than or equal to the moment
capacity of the pier section, the design is satisfactory. The ultimate capacity
of a continuous-span bridge calculated by this method is less than the actual

capacity because no collapse mechanism is formed.
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Fig. 4.6 Equilibrium method

Since Overload flange stress is limited to 0.95F,, maximum positive mo-
ment at Maximum Load can not exceed 1.23M,. A typical shape factor for a
composite section in positive bending is about 1.4. Therefore, the capacity and

the size of the positive bending section are controlled by the Overload limit

state in most bridge designs.



CHAPTER FIVE

SUMMARY OF EXPERIMENTAL RESULTS

5.1 Ultimate Strength of Composite Plate Girders
(AISIproject 320)

The AASHTO Specifications limit the moment capacity of a composite
plate girder to the first yield moment based on the result of tests on symmetrical
plate girders. But the behavior and strength of a composite plate girder in
positive bending are different from those of a steel plate girder. To evaluate
the ultimate strength of a composite plate girder, Vasseghi and Frank conducted

ultimate load tests on three large-size composite plate girders[9].

In the experimental program, Girder 1 and 2 were designed to be simply
supported to simulate a positive bending region, while Girder 3 simulated a two
span continuous girder by extending an overhang beyond one of the supports.
The negative bending section of Girder 3 was post-tensioned with low relaxation
strands. For Girder 1 and 2 and the positive bending section of Girder 3, the
ratio of web depth to thickness was about equal to the 1983 AASHTO limiting
ratio for noncompact sections.

All three sections reached their plastic bending moments in the positive
bending region and exhibited ductile behaviors despite slender webs because
the concrete slab shifted the neutral axis close to the top flange. The moment-
rotation curves showed that some permanent deformation occurred at loads
well below the yield moment due to the slip caused by concrete crushing around
the shear studs. But the permanent set does not affect the moment-curvature
curves in Fig. 2.16 because the moment-curvature behaviors were measured at
midspan where there was no slip.

The negative bending section of Girder 3 had an ultracompact compression
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flange and a slender web whose overall depth-to-thickness ratio exceeded the
compact section limit of the 1983 AASHTO Specifications. The plastic neutral
axis was close to the compression flange due to the much larger compression
flange than the tension flange. The negative bending section reached its plastic
moment and exhibited ductile behaviors. In calculating the plastic moment, the
concrete slab and the reinforcing bars were ignored and the nominal ultimate

strength was used for the strands.

5.2 Interior-Support-Model Test
(AISI project 188)

In the ALFD method, the moment-rotation behavior of the pier section
of a continuous-span bridge affects the design requirements at Overload and
Maximum Load. At Overload, the automoments are calculated using the load-
ing portion of the moment-rotation curve. At Maximum Load, the concept of
an effective plastic moment which depends on the descending portion of the
moment-rotation curve is used. To study the moment-rotation behavior of the
pier section of a continuous composite beam bridge, a half-scale component
specimen with shored construction was tested[23].

The flange slenderness ratio was 8.0 which is about halfway between the
compact section limit of the 1990 AASHTO Specifications and the ultracompact
section limit (or the compact section limit of the 1983 AASHTO Specifications).
The ratio of web depth to thickness was 58. The reinforcing bars in the concrete
slab shifted the neutral axis above the mid depth of the web. The ratio of twice
the web depth in compression to the web thickness was 96.6 at the plastic state.
The limiting web slenderness ratio for compact sections of the 1990 AASHTO
Specifications is 86.

Test results showed that inelastic rotation occurred well below the yield

moment largely due to the concrete cracking. The ultimate moment capacity
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was about 90% of the plastic moment. After the ultimate moment, the rotation
continued to increase as the moment decreased. The test was stopped when
the slab pulled away from the steel beam. The loading portion of the moment-
permanent rotation curve obtained in this test is used in the AASHTO Guide
Specifications to compute the automoments for composite beams with compact
sections. In the Guide Specifications, this curve was adjusted vertically to reach

the plastic moment because the specimen could not reach its plastic moment.

5.3 Moment-Rotation Tests of Steel Girders
(AISI project 188)

The ALFD procedures in the current Guide Specifications apply specifically
to compact sections. To extend these new limit state criteria to plate girders,
three transversely stiffened plate girders, US, UL, and SL, were tested and
the moment-rotation curves were developed[26]. For all three specimens, the
equivalent flange and web slenderness ratios for 50 ksi steel were close to the
AASHTO limiting values for noncompact sections, 9.8 and 163.2, respectively.
Twice the web depth in compression at plastic moment was used to calculate
the web slenderness ratio for unsymmetrical specimens US and UL. Using twice
the web depth in compression at the yield moment reduces the web slenderness
to 146 for US and 133.6 for UL. Lateral braces were provided at the ends
and midspan of all specimens. The spacing of the lateral braces satisfied the
requirements of the Guide Specifications for plastic analyses.

Test results showed that the ultimate moment was just below the yield
moment for each specimen. The ratio of the slope of the descending curve to
that of the elastic rising curve ranged from -0.1 to -0.16. Based on the moment-
rotation curves, Schilling developed a lower bound curve for the descending
portion. The effective plastic moments which depend on the web and flange

slenderness ratios were calculated based on the procedure in AASHTO Guide
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Specifications. The values were very low and varied from 35% to 45% of the
yield moment. The plastic rotation at the effective plastic moment was 0.07,
0.068, and 0.037 radians for specimens US, UL, and SL respectively. The
plastic rotation requirement at the effective plastic moment is 0.063 radians in
the Guide Specifications.

To develop improved moment-rotation characteristics for steel girders with
noncompact webs, three symmetrical plate girders with ultracompact compres-
sion flanges were tested[27]. One-sided transverse stiffeners were welded to the
web and the compression flange at a distance equal to one-half the web depth
on each side of midspan. The equivalent web slenderness ratios were about
87, 127, and 166 for specimens S, M, and D respectively. The spacing of the
lateral braces satisfied the requirements of the Guide Specifications for plastic
analyses.

All three specimens showed improved moment-rotation characteristics com-
pared with the previous tests. The ratio of the slope of the descending curve
to that of the elastic rising curve for specimen D was -0.083. The ultimate
moments were 1.11Mp, 1.02Mp, and 0.90Mp (Mp = plastic moment) for spec-
imens S, M, and D respectively. The effective plastic moments decreased from
0.89Mp to 0.75Mp as the web slenderness ratio increased. The ratio of the
effective plastic moment to the ultimate moment was 0.835 and the plastic ro-
tation at the effective plastic moment was 0.0345 radians for specimen D. The
closely spaced stiffeners in the plastic hinge region reduced the wave length of

the flange local buckling and improved the rotation capacity.

5.4 Component Test Report (AISI project 330)

To develop experimental moment-rotation curves for the pier section of
a continuous composite girder bridge, a composite plate girder component

specimen was tested at the laboratory of the Federal Highway Administra-
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tion (FHWA)[28]. The specimen had an ultracompact compression flange and
the concrete deck consisted of precast concrete panels. The height-to-thickness
ratio of the web plate was 103.8. Using twice the web depth in compression
at the plastic moment increased the ratio to 140.1 because of the prestressing
strands in the concrete slab. The specimen was supported at the center and

loaded down at a distance of 9 ft on each side of the center.

In the first phase, noncomposite dead load was applied to the steel girder
to simulate the unshored construction. After that, the precast panels were
erected and post-tensioned longitudinally using mechanical leveling and hold-
down devices and then made composite with the steel plate girder by filling
the shear stud block-outs in the precast panels with grout. After grouting had
cured, the composite girder was tested at Overload by loading through the
precast deck. In the final phase, the loading points were moved 3 ft toward the
center support to simulate the actual moment-to-shear ratio and the complete

moment rotation curve including the descending portion was obtained.

Test results showed that the specimen behaved elastically under the non-
composite dead load, even though the maximum moment was above the first
yield moment of the steel section. Deviation from the linear elastic moment
rotation curve started at an early stage of composite action. A drastic change
in slope at Service Load occurred due to concrete cracking. After that, com-
pression flange yielding caused further inelastic rotation. After the moment
reached its maximum value of 1.1My (or 0.85Mp), it started to decrease as the
rotation continued to increase. The ultimate moment capacity calculated using

the modified Q formula in Chapter 3 is 0.86Mp.

The moment vs permanent rotation curve of the specimen is compared with
those from Schilling’s tests in Fig. 5.1. The inelastic rotation capacity of the
specimen was reduced considerably when the shear connectors pulled out of
the precast panel. Nevertheless, the curve is still well above Schilling’s lower

bound curve. The web slenderness ratio of this specimen is between the ratios
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for Schilling’s specimens M and D. Closely spaced transverse stiffeners adjacent
to midspan were not used in this component test. The curve for the component
specimen fell below the curve for specimen D as shown in Fig. 5.1. The ratio
of the average slope of the descending curve to the slope of the elastic rising
curve was -0.069. .

In calculating the effective plastic moment based on the procedure in the
AASHTO Guide Specifications, only the web component of the plastic moment
was reduced because an ultracompact section was used for the compression
flange. Since the web component was less than 20% of the total plastic moment,
the effective plastic moment of this specimen was about 94% of the maximum

moment capacity despite the slender web.

5.5 Moment-rotation test of a composite plate girder
in negative bending (AISI prOJect 515)

5.5.1 Test specimen

To evaluate the moment-rotation characteristics of the pier section of a
continuous composite plate girder bridge, a component test was performed on a
1/2 scale specimen at the Ferguson Structural Engineering Laboratory (FSEL).
The prototype was a 200 ft two span continuous composite plate girder with
13.0 ft transverse girder spacing. An unsymmetrical steel section with a larger
compression flange than the tension flange was used. The elevation of the girder,
the actual dimensions of the cross section and the material properties are shown
in Fig. 5.2. The maximum web bowing between flanges and the maximum
compression flange bowing between supports were taken as the initial out-of-
flatness. The initial out-of-flatness was 1/16 inch for the 24 inch web panel and
7/16 inch for the compression flange respectively. To prevent the splitting of
the concrete slab off the steel plate girder, the composite section was extended

6 ft beyond the support at both ends. Continuous submerged arc welding was
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used to fabricate the specimen.
To improve the rotation behavior, an ultracompact section with a slender-
- ness ratio of 7.3 was used for the compression flange. The depth-to-thickness
ratio of the web plate was 155.6. The elastic neutral axis of the steel section was
below the mid height of the web due to the larger compression flange. When
twice the elastic web depth in compression of the steel section was used, the
slenderness ratio was 143. The calculated web slenderness ratio using twice
the web depth in compression of the composite section at the plastic moment

increased to 198.9 due to the reinforcing bars in the concrete slab.

5.5.2 Test set-up

To simulate the negative bending area between two inflection points of a
continuous composite bridge, the specimen was tested as a simple beam re-
strained by steel rods at the reaction points and loaded upward by a hydraulic
ram at midspan. To assure that thé bending capacity of the specimen was
not affected by lateral-torsional buckling, lateral bracing was provided for the
compression flange at 12 ft spacing. The maximum spacing allowed by the
AISC LRFD Specification for plastic analyses was 12.5 ft for this specimen.
The tension flange was braced at supports. A considerable amount of inelastic
deflection occurred during the ultimate load test. To avoid the restraint by the
bracing system, a bracing design based on Watt’s straight line mechanism|35]
was used except at the supports and midspan. A manually adjusted brace was

used at midspan. An overall view of the test setup is shown in Fig. 5.3.

5.5.3 Test procedure

For an unshored composite bridge, the initial dead load which consists of
the weight of the concrete slab and the steel girder is carried by the steel girder

alone. The additional dead load plus live load is carried by the composite sec-
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Figure. 5.3 Overall view of the test setup

tion. To investigate the behavior of a pier section under noncomposite dead
load, the steel plate girder was loaded up to a load of 100 kips prior to casting
the concrete slab. With the plate girder held at the simulated dead load, con-
crete was placed on the formwork which were supported by the shorings. After
the concrete cured, the composite plate girder was loaded up to the design
Overload. During the Overload test, the composite plate girder was unloaded
and reloaded at several locations to investigate the behavior at Overload. Fol-
lowing the Overload test, the specimen was loaded up to its ultimate capacity.
The descending portion of the moment-rotation curve was obtained by applying

deflection increments after the ultimate strength was reached.

The significant features characterizing the cross sectional behavior are indi-
cated on the load deflection curve in Fig. 5.4 and the loads at the characterizing

features are summarized in Table 5.1,
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Figure. 5.4 Features characterizing the cross sectional behavior

Table 5.1 Loads at the characterizing features

Bottom Lateral- Web Bottom
Conprete Concyete flange torsional local flange
casting cracking yielding buckling buckling  buckling

100 kips 140 kips 167 kips 189 kips 191 kips 195 kips

5.5.4 Dead load test

The steel plate girder was loaded up to a simulated noncomposite dead
load of 100 kips. The cross section was designed for the maximum stress to be
smaller than the yield stress at the noncomposite dead load. Several yield lines
were observed on the web at an early stage when the applied load was about 50

kips. These yield lines (whitewash flaking) started at the top of the web near
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the stiffeners and gradually extended to near the center of the web as shown in
Fig.5.5. Residual stresses induced from the welding of the stiffeners to the web
are assumed to have caused the web yielding. Due to the web yielding, bending
stresses were redistributed across the cross section. This yielding also induced
some permanent deformation under the dead load test. As shown in Fig. 5.6
and Fig. 5.7, the specimen could not return to its original position when it was
unloaded. During the dead load test, lateral bracing was provided at supports‘

and halfway between the supports and the center. No lateral or local buckling

was observed during this loading.

Figure. 5.5 Web yielding under dead load test
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5.5.5 Overload test

The load increased to 123 kips due to the weight and shrinkage of the
concrete slab after the dead load test. The Overload test was performed on the
composite plate girder. As shown in Fig. 5.6, the stiffness of the cross section
increased greatly due to the concrete slab, but it was less than the theoretical
stiflness of the composite section calculated using the actual slab width as the
effective slab width. This could be the effects of shear lag, shrinkage of the
concrete slab, the slip between the concrete slab and the steel girder, and the
yielded web.

Rotations due to the weight of the concrete slab were not measured because
electronic rotation gauges were removed from the specimen for protection dur-
ing the casting of the slab. This is represented by the vertical line in the
moment-rotation curve of Fig. 5.7 after the dead load test. The web yielding
(whitewash flaking) did not progress as rapidly as in the dead load test be-
cause the concrete slab shifted the neutral axis upward. The concrete cracking
reduced the flexural stiffness of the cross section considerably. The flexural
stiffness after concrete cracking was smaller than the theoretical stiffness of the
cracked section probably due to the yielded web.

At Overload, the ALFD method uses the automoment concept which is
based on the assumption that the unloading occurs elastically with the same
stiffness as the uncracked section. To examine the validity of this assumption,
the specimen was unloaded to the Service Load level and reloaded again at
various stages. The initial slopes of the unloading curves were nearly the same
as that of the elastic loading curve of the composite section as shown in Fig.
5.6 and Fig. 5.7. The slopes became smaller as the specimen suffered yielding
and permanent deformations, but the reduction was insignificant.

The yielding of the bottom flange started at a load of 167 kips which is about
90% of the design Overload and progressed up through the web increasing the

web depth in compression. The theoretical yield load calculated considering the
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Fig. 5.8 Variation of the web depth in compression

sequence of loading was 179 kips. The change of the web depth in compression.
in the first 24” panel from the center is shown in Fig. 5.8. The web depth in

compression was calculated from the measured strains along the steel section.

5.5.6 Ultimate load test

After the Overload test, the specimen was loaded to failure. Due to the
initial out-of-flatness, the out-of-plane deflections of the web and the compres-
sion flange occurred at the beginning of the loading and continued as the load
increased. In the elastic range, the lateral and/or local instability is assumed
to start at the poin{; where the slope of the load vs out-of-plane deflection curve
changes drastically. However, in the inelastic range, the slope can be reduced
by the inelastic behavior of the specimen before the start of the instability.

To evaluate the onset of the instability in the inelastic range, the midspan



67

2.5

web buckling

-

& 2.0

g -

S g

5 15

ho]

g

%( 1.0

g
0.5
O-O L Ll L) v | L) L} Ll 1
0.00 0.05 0.10 0.15 0.20

Square of web deflection ( m2 )

Figure. 5.9 Determination of web buckling

deflection vs lateral deflection curve was used for the lateral torsional buck-
ling[32] and the midspan deflection vs square of the web deflection curve was
used for the web bend-buckling[31].

The point of drastic change in the slope of the curve is determined as the
onset of the instability as shown in Fig. 5.9 (191 kips) and Fig. 5.10 (189 kips).
Fig. 5.11 shows the laterally buckled shape of the test specimen.

The load continued to increase after lateral torsional buckling occurred,
until local buckling of the compression flange started at a load of 195 kips. The
ultimate load calculated by the modified Q) formula was 178 kips. The local
flange buckling which triggered the descending curve occurred in the second
panel from the center as shown in Fig. 5.12. This was because the bearing
plate welded to the compression flange at the loading point provided large
restraint to the compression flange in the first panel. The complete descending

curve could not be obtained due to the failure of the bracing system.
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5.11 Laterally buckled shape
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Figure. 5.12 Local buckling of compression flange

5.5.7 Comparison with other test results

The rising portions of the moment vs permanent rotation curves for the
test specimens with slender webs and ultracompact compression flanges were
compared with the design curves of the AASHTO Cuide Specifications in Fig.
5.13 and Fig. 5.14. The permanent rotation was calculated by subtracting the
theoretical elastic rotation of the uncracked section from the measured total
rotation. In Fig. 5.13, the moment was normalized with respect to the plastic
moment. The AASHTO design curves, which apply to compact sections, were
above the experimental curves.

In Fig. 5.14, the moment was normalized with respect to the yield moment.
In this figure, the AASHTO design curves were adjusted to reach the yield
moment because the web slenderness ratios of the test specimens exceeded the

limit for compact sections. For unshored composite sections, the theoretical
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Figure. 5.15 Lower bound curves

yield moment was calculated considering the load sequence. As shown in Fig.
5.14, the curve of Schilling’s specimen D agreed very well with the AASHTO
design curve for noncomposite sections. But the AASHTO curve for composite
sections was well below the curves for the FHWA and FSEL specimens. This is
because the AASHTO curve for composite sections was developed based on a
component test for shored construction in which the concrete cracking occurs
at an early stage. In addition, the ultimate moment capacities of the FHWA
and FSEL specimens were greater than their yield moments. Therefore, a new
design curve needs to be developed for composite girders with noncompact

sections.

Since the experimental moment-permanent rotation curves for the FHWA
and FSEL specimens did not have sufliciently similar behavior for the devel-
opment of one typical curve, a lower bound curve must be developed for each
specimen. The dashed lines in Fig. 5.15 were developed to represent the lower

bounds for the moment-permanent rotation curves of the specimens. The per-
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manent rotation of the dashed lines was determined by subtracting the the-
oretical elastic rotation of the uncracked section from the theoretical elastic
rotation of the cracked section as shown in Fig. 5.16. The dashed lines started
at the noncomposite dead load moment instead of the cracking moment to give
a conservative fit to the experimental curves. If the dashed lines provide the
lower bounds, the automoments at Overload can be calculated conservatively
as the difference between the moments obtained using the uncracked section
and the cracked section for the negative bending area as shown in Fig. 5.17.
As shown in Fig. 5.15, the cracked section curve of the FHWA specimen
was below the experimental curve. For the FSEL specimen, the cracked section
curve was below the experimental one at first, but went above it later. Fig.
5.18 shows the beam line developed based on the prototype design in which
the elastic Overload moment at the pier was close to the yield moment. The

cracked section curve gives a smaller automoment than the experimental curve,
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but the difference is insignificant. Therefore, the cracked section curve can be
assumed to provide a lower bound and the automoments at Overload can be
calculated as shown in Fig. 5.17 as long as the elastic Overload moment at the
pier is less than the yield moment.

In most composite plate girder bridges, the shape factor (Mp/My) of the
pier section is less than 1.3 and the ultimate bending strength of the pier section
is less than its plastic moment. Therefore, as long as the elastic Maximum
Load moment at the pier is limited to its ultimate bending strength, the elastic

Overload moment at the pier can not exceed the yield moment.

5.6 Overall Summary

1. Most composite plate girders with slender webs can reach the plastic

moment capacity and have sufficient ductility under positive bending.
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2. The ratio of the slope of the descending curve to that of the initial rising
curve ranged from -0.1 to -0.16 for the plate girders with slender webs and com-
pression flanges. When an ultracompact section was used for the compression
flange, the slope was improved to -0.083 for Schilling’s specimen D and -0.069
for the FHWA specimen.

3. The effective plastic moment calculated based on the procedure in the
AASHTO Guide Specifications was too high for composite plate girders with
ultracompact compression flanges. The ratio of the effective plastic moment to
the ultimate moment was 0.94 for FHWA specimen and 0.88 for FSEL specimen.

4. The ultimate moment capacity by the modified Q formula was close
to the experimental strength for the FHWA specimen but smaller than the
experimental strength by about 9% for the FSEL specimen.

5. The AASHTO design curves adjusted to reach the yield moment for
plate girders agreed well with the test curve for a noncomposite section, but
gave conservative results for composite sections under unshored constructior.

6. The automoments at Overload can be calculated as the difference be-
tween the moments obtained using the uncracked section and the cracked sec-
tion for the negative bending area as long as the elastic Overload moment at

the pier is less than the yield moment.



CHAPTER SIX

DEVELOPMENT OF A COMPUTER
PROGRAM

6.1 Introduction

The redistribution of moment and the ultimate strength of a continuous
beam can be obtained easily if the cross section has elastic-perfectly plastic
moment curvature relationship. The structure behaves elastically until the
plastic moment is reached at the pier section. For the additional loading, mo-
ment redistribution occurs with the pier section rotating at the plastic moment.

When the positive section reaches the plastic moment, a mechanism is formed

and the ultimate load is obtained.

However, in most continuous composite plate girder bridges, the maximum
moment capacity of the pier section is less than the plastic moment and the
moment-rotation curve has a descending portion beyond its maximum moment
as shown in Fig.5.1. Therefore, the ultimate load capacity can not be calculated
by the plastic mechanism method. In order to predict the inelastic behavior
and the ultimate capacity of continuous composite plate girder bridges, the
redistribution of the pier moment to the span region must be considered. This
moment redistribution occurs through the interaction of the descending curve
of the pier section and the rising inelastic curve of the midspan section as shown
in Fig. 6.1.

To study the redistribution of moment, an one-dimensional nonline‘ar com-
pﬁter program, NACB, is developed. In this program, a bridge is modeled
using a finite element idealization and a combined stiffness method is used to
solve the resulting nonlinear equations. The basis of this program is described

in this chapter.
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6.2 Assumptions

Several assumptions which were made to simplify the nonlinear program
are listed below:

1. Small deflection theory is adopted and geometrical nonlinearity is not con-
sidered.

2. Inelastic behavior is considered for flexural stiffness only and shear rigidity
is assumed to remain elastic.

3. Nonlinear effect due to the local buckling of the pier section is assumed to
occur over a length equal to the depth of the steel section[36]. Hence, the
steel section depth is used as the element length for the first element on
each side of the pier.

4. The effect of lateral-torsional buckling is accounted for in the moment-
curvature curve.

5. The stiffness of the unloading curve is assumed to be the same as the elastic
stiffness.

6. Actual moment-curvature curve is approximated using several straight
lines.

7. Ultimate load carrying capacity is assumed to be reached when the solution

convergence is not obtained.

6.3 Moment-Curvature Relationship

In the computer program, moment-curvature characteristics are used as
input data instead of moment-rotation characteristics. The descending portion
of the moment-curvature curve of the pier section can be obtained from the
moment-rotation curve as shown in Fig. 6.2. The rotation, 8, is defined as
shown in Fig. 6.2(a). After the pier section reaches the ultimate moment, the

rotation continues to increase while the moment decreases. In Fig. 6.2(h),
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6, is the total rotation and 6, the elastic rotation at a moment of Ma. The
curvature diagram in Fig. 6.2(c) has two regions. Region 1 represents the
elastic behavior. Region 2 represents the inelastic behavior and the curvature
is assumed to be constant over a length equal to the depth of the steel section.
The area of region 1 is equal to 8, and the area of region 2 is equal to the inelastic
rotation, (6, - 6.). From this curvature-area theorem, the total curvature, ¢,,
on the moment-curvature curve in Fig. 6.2(d) can be determined. When the
_slope of the descending curve, u, is -1/60 in the moment-curvature curve, it is

approximately equivalent to the value of m = - 1/10 in the moment-rotation

curve.

6.4 Combined Stiffness Method

In the nonlinear program, the coefficients of the stiffness matrix depend
on the deformations. Therefore, a direct solution can not be obtained and an
incremental and iterative method must be used to solve the nonlinear equation.
Two generally available methods for structural application are initial stiffness
method and tangential stiffness method. Tangential stiffness method results
in faster convergence. But the descending portion of the moment curvature
curve of the pier section exhibits negative stiffness. To consider the descending
portion and fast convergence, the initial stiffness methiod which is uncondition-
ally convergent is combined with the tangential stiffness method[29]. In this
combined stiffness method, a new stiffness matrix is evaluated at selective in-
cremental intervals when the flexural stiffness of an element is changed. Several
iterations are made using the same stiffness matrix until the convergence is ob-

tained. The solution algorithm of this method is shown schematically in Fig.
6.3.
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Figure 6.3 Combined stiffness method

6.5 Program Organization

In addition to the basic subroutines which are used for elastic analyses, this
nonlinear finite element program includes two more subroutines. One is used
to evaluate the unbalanced forces and the other is to check the convergence.
Two primary loops are necessary. The inner loop controls the iteration of the
solution and the outer loop controls the load increment. ‘

The flow chart of this program is shown in Fig 6.4. The solution procedure
which consists of seven major steps is described below:

1. Load increments are applied.
2. New tangential stiffness matrix corresponding to the deformation is evalu-

ated if necessary.

3. Solution is implemented using finite element analysis procedure to get the
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nodal displacements.
4. Unbalanced forces are calculated as the difference between the total applied
loads and the equivalent nodal forces for each nodal point.
3. Convergence is checked. To satisfy the convergence criteria, the norm of
the unbalanced forces must become less than the tolerance factor times the

norm of the total applied forces This criteria is represented by an equation,

Z?Ll(@i)z
YL ()2

< tolerance factor (6.1)

where N is the total number of nodal points, ¢ is the unbalanced forces,
and f is the total applied force.

6. If solution has not converged, go to step 3 and carry out the next iteration
using the unbalanced forces as applied loads.

7. Otherwise output results and go to step 1.



CHAPTER SEVEN

ULTIMATE CAPACITY OF CONTINUOUS
COMPOSITE PLATE GIRDERS

7.1 Introduction

When a continuous beam is loaded beyond its elastic limit, moment redis-
tribution occurs. If the cross section has an elastic-perfectly plastic moment-
curvature relationship, the load-deflection curve can be obtained easily in two
steps as shown in Fig. 7.1[30]. First plastic hinge forms at the pier section when
the elastic pier moment reaches the plastic moment, Mp. This is represented by
the number 1 in the figure. Upon further loading, the moment is redistributed
with the pier section rotating at the plastic moment, Mp. Due to the plastic
hinge action of the pier section, the structure behaves as if it is simply sup-
ported during subsequent loading. When the positive bending section reaches
its plastic moment, a mechanism is formed and the ultimate load capacity is
obtained. This is represented by the number 2. After that, the beam continues
to deform as a mechanism under constant load until one of the plastic hinges
reaches its deformation capacity (number 3).

The ultimate load can be calculated by a plastic mechanism method. When
the same plastic moment value is used for the positive bending section and the
pier section, the load at which first plastic hinge occurs at the pier is about
67% of the plastic collapse load for uniformly distributed load and about 82%
of the plastic collapse load for concentrated load at midspan.

In actual continuous composite plate girders, the positive and negative
bending sections will exhibit inelastic behaviors before the plastic moment is

reached due to steel yielding and/or concrete cracking. Moreover, the moment-
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rotation curve of the negative bending section has a descending curve beyond
the maximum moment capacity due to the local buckling. The rotation capacity
is not suflicient for simple plastic design. The interaction of the descending
curve with the inelastic rising portion of the positive bending section makes
the redistribution of moment more complicated and the ultimate load can not
be calculated by the plastic mechanism method.

As a simple way to compute the ultimate load capacity of a continuous
bridge with limited rotation capacity at the interior support, the concept of
an effective plastic moment is given in the AASHTO Guide Specifications.
The effective plastic moment is obtained by reducing the flange and/or web
components of the full plastic moment to account for local instabilities. In
this method, the ultimate load capacity can be calculated by the simple plastic
design method assuming the pier moment to remain at the effective plastic
moment during the plastic hinge action. This method gives conservative results
because the actual pier moment remains above the effective plastic moment
when the ultimate load is reached.

In this chapter, the inelastic behavior and the ultimate capacity of con-
tinuous composite plate girders are investigated using the nonlinear computer

program, NACB, developed in chapter 6.

7.2 Historical Review

In order to evaluate the ultimate load capacity of continuous composite
plate girders, Kubo and Galambos performed a plastic analysis of two-span
continuous composite plate girders[31]. In the analysis, the moment-rotation
curve of the negative behding section was idealized by two straight lines (elastic
part and descending part) based on experimental data. The ultimate capacity
was assumed to be reached when the first hinge formed in the positive bend-

ing region. The moment-curvature curve of the positive bending section was
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assumed to be elastic-perfectly plastic.

The results of the analysis showed that the ultimate load capacity was
affected considerably by the ratio of the ultimate bending strengths of the
positive and negative bending sections. The effect of the slope of the descending
curve on the ultimate capacity was relatively small. In this study, using the
concept of an effective plastic moment was found to give conservative results

for plate girders with noncompact compression flanges and webs.

In Eurocode 4, the sections that can reach the yield moment with lim-
ited rotation capacity are categorized as semi-compact sections. A compos-
ite beam with a semi-compact section can reach its yield moment in negative
bending. In positive bending, however, it can reach the plastic moment which is
much greater than the yield moment in negative bending. Moreover, the elastic
maximum pier moment is usually greater than the elastic maximum midspan
moment. Therefore, limiting the elastic maximum pier moment to the yield
moment gives an overly conservative estimation of the ultimate load capacity

of continuous composite beams with semi-compact sections.

In the design of continuous composite beams with semi-compact sections,
the Eurocode 4 method allows a redistribution of up to 20% of the elastic
pier moment to the midspan region. Johnson and Fan examined the safety of
this method by analyzing two-span continuous composite beams using iteration
calculations[32]. The falling branch of the moment-rotation curve of the pier

section was predicted from the results of double-cantilever tests.

Based on 43 design examples, the Eurocode 4 design method was found
to be safe and economical for the design of continuous composite beams with
semi-compact sections. The effects of the slope of the descending curve of the
pier section, residual stresses, and the construction methods on the ultimate

capacity were negligible.
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7.3 Numerical Example

To investigate the inelastic behavior and the ultimate capacity of continuous
composite plate girder bridges using the nonlinear program, NACB, a 200 ft
two-span unshored composite bridge with 13 ft transverse girder spacing was
considered as a numerica] example. Material properties and girder dimensjons

for the positive bending section and the pier section are shown in Fig. 7.2.

7.3.1 Cross sectional properties

Moment-curvature curves of the positive and negative bending sections are
approximated by several straight lines'as shown in Fig. 7.3. Inelastic behaviors
of the cross sections are initiated by yielding of the bottom flange in the positive
bending section and by concrete cracking in the negative bending section. Basic

cross sectional properties used in this numerical example are listed below.

For composite section:

M, = plastic moment of positive section = 20,000 kip — ft

My = yield moment of positive section = 15,000 kip — ft

Mpn = plastic moment of pier section = 23,000 kip — f1

M, = ultimate moment of pier section = 20,000 kip — ft

M. = cracking moment of pier section = 15,000 kip — £+

El. = elastic flexural stiffness of positive section — 6.0+107 kip — f42

ks * EI. = inelastic flexural stiffness of positive section =1.2x107 kip — ft2
El, = elastic flexural stiffness of pier section = 6.0%107 kip — ft2

kn * EI, = inelastic flexura] stiffness of pier section — 2.4%107 kip — f12

ux El, = negative flexural stiffness of pier section = -2.0+106 kip — f12
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Figure 7.3 Idealized moment-curvature curves

For steel section:

My, = yield moment of positive section = 9045 kip — ft
My, = yield moment of pier section = 17506 kip — ft
EI, = elastic flexural stiffness of positive section = 2.16«107 kip — f12

EI, = elastic flexural stiffness of pier section = 3.75107 kip — f12

The yield moment, M,, and the cracking moment, M,,, of the composite
section were calculated considering the loading sequence in unshored construc-
tion. The inelastic stiffness of the positive section was predicted based on the
cross sectional analyses given in chapter 2. Instead of using the theoretical val-
ues, the cross sectional properties of the pier section were developed based on

the results of the FSEL test in chapter 5. Due to local instabilities, a composite
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plate girder in negative bending can not reach its plastic moment, M,,. The
maximum moment capacity of the pier section, M,, was assumed to be 0.87M,,
based on the test results. The elastic stiffness of the pier section was selected
to be about mid-way between the theoretical uncracked section stiffness and
cracked section stiffness. The slope of the descending branch was assumed to
be -1/30 of the elastic flexural stiffness based on Schilling’s and FHWA test

results. This value is approximately equivalent to a slope ratio of -0.2 in the

moment-rotation curve.

7.3.2 Loading

In unshored construction, the noncomposite dead load composed of the
weight of the concrete slab and the steel girder is supported by the steel girder
only. After the concrete hardens, superimposed dead load such as parapets and
future wearing surface is supported by the composite section. In this example,
the noncomposite dead load was 1.68 k/ft and the superimposed dead load was

0.514 k/ft. Dead load was increased by a factor of 1.3 for the maximum design
load.

For a 200 ft span bridge, lane loading governs. Therefore, AASHTO HS20
lane loading was used for live load. The governing positive and negative bending
loadings are shown in Fig. 7.4. The concentrated load was placed at midspan
for both the positive and negative bending loadings to compare the two loading
cases. The concentrated load position in the AASHTO Specifications was a
little different. But calculations for both cases showed that the effect on the
ultimate load capacity was insignificant. The impact factor of 0.154 and the
distribution factor of 1.82 were applied to the loading in the figure. Live load

was increased by a factor of 2.17 for the maximum design load.
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Figure 7.4 AASHTO HS 20 loading

7.3.3 Results

The load vs deflection curve is shown in Fig. 7.5. Load number 1 and Load
number 2 represent the noncomposite dead load and the superimposed dead
load respectively. The ratio of the applied live load to the maximum design
live load at failure is 1.525 under the negative bending loading (Load number
6) and 1.60 under the positive bending loading (Load number 7) respectively.
Therefore, the negative bending loading governs for this girder. The dashed
line represents the load-deflection curve when the slope of the descending curve
of the pier section is zero. In this case, the ratio of the applied live load to the
maximum design live load is 1.76 regardless of the loading patterns.

The cross sectional behaviors are shown in Fig. 7.6 and Fig. 7.7. The
negative bending loading causes higher pier moment at the same load level.

The maximum moment capacity of the pier section, Mu, is reached at Load
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number 3 under negative loading(Fig. 7.6(b)), but at Load number 5 under
positive loading(Fig. 7.7(b)). After the pier section reaches its maximum mo-
ment capacity, the redistribution of moment occurs through the interaction of
the rising portion of the positive section and the descending curve of the pier
section. Even under positive bending loading, first hinge occurs at the pier due
to the high dead load pier moment. The ultimate loading capacity is obtained
when the positive section reaches its plastic moment at Load number 6 under
negative loading(Fig. 7.6(a)) and at Load number 7 under positive loading(Fig.
7.7(a)).

When the ultimate load capacity is reached, the pier section moment is
further down on the descending curve under the negative loading (Load number
6 in Fig. 7.6(b)) than under the positive loading (Load number 7 in Fig. 7.7(b)).
This is why the capacity under the positive bending loading is a Little higher

than the capacity under the negative bending loading as shown in Fig. 7.5.
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7.3.4 Effective plastic moment

The effective plastic moment of the pier section computed based on the
procedure in the AASHTO Guide Specifications is 0.845M,, or 0.98M,. The
ultimate load capacity calculated using this effective plastic moment is about
10% higher than the capacity under the negative bending loading obtained
in the numerical example. This shows that using the equations in the Guide
Specifications for a composite plate girder with an ultracompact compression
flange may give unconservative results. To get the same ultimate load capacity

as in the example, an effective plastic moment of 0.74M,, or 0.85M, must be

used.

7.4 Parametric Study of Ultimate Load Capacity

The ultimate load capacity of a continuous girder bridge depends on the
moment-curvature characteristics of the positive and negative bending sections.
The main parameters which characterize the moment-curvature curves are k,
and M, /M, for the positive section and kny M., /My, and u for the pier section
as shown in Fig. 7.3. The parameters k, and k, are the ratios of the inelastic
flexural stiffness to the elastic flexural stiffness for the positive section and
the negative section respectively. The parameter u is the ratio of the negative
stiffness (of the falling branch) to the elastic flexural stiffness of the negative
bending section. Four different values of -1/15, -1/20, -1 /30, and -1/60 were
used for the parameter « in this study. When w is -1 /15, the descending curve
drops four times as fast as that with u = -1/60.

In this parametric study, the composite plate girder bridge used in the nu-
merical example of the previous section is used as the analytical model. The
effects of variations in the above-mentioned parameters on the ultimate load

capacity are investigated. The noncomposite section behavior is not considered
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to simplify the analyses. The ultimate load capacities obtained from the analy-
ses are represented in a nondimensional form. The ultimate load is represented
by w, for uniformly distributed load and by P, for concentrated load. The load
at which the solution convergence can not be obtained is taken as the ultimate
load. w, and P, are the simple plastic collapse loads. These values are calcu-
lated assuming that u is 0.0 ( or the pier section has enough rotation capacity

at the maximum moment capacity, M, ).

7.4.1 Inelastic stiffness of positive section

In order to evaluate the effects of the inelastic flexural stiffness of the pos-
itive section on the ultimate loading capacity, k, was changed from 0.05 to 1.0
while keeping the other properties the same as those in the numerical example.
Fig. 7.8 and Fig. 7.9 show the positive section mdment and the pier section
moment when the ultimate capacity was reached. When u is -1 /60, the posi-
tive section could reach its plastic moment, M., even with very small inelastic
stiffness (k, = 0.05) as shown in Fig. 7.8(a). As the inelastic stiffness of the
positive section decreased, more moment was redistributed to the pier section.
Therefore, the pier section moment went further down on the descending curve
at the ultimate load as shown in Fig. 7.8(b). When u is -1/15, the positive
section moment at the ultimate load decreased as the inelastic stiffness, k,,
was reduced as shown in Fig. 7.9(&). As the descending curve dropped more
rapidly, the interaction of the inelastic stiffness of the positive section and the
negative stiffness of the descending curve of the pier section made the solution
diverge earlier. For k, = 0.1 or less, the ultimate load capacity was reached
when the positive section reached the yield moment as shown in Fig. 7.9(a).

Fig. 7.10 and Fig. 7.11 show the ultimate load in terms of &, for uniformly
distributed load and concentrated load respectively. As can be seen in these

figures, an increase in the inelastic stiffness of the positive section increased
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the ultimate loading capacity. The ultimate load was not affected much by k,
when k, was greater than 0.4. At k, = 0.05, the ultimate loads, w, and Py, were
reduced to about 0.9w, and 0.96P, for u = -1/60, and 0.8w, and 0.87P, for u =
-1/15 respectively. The dotted line represents the first hinge load at which the
elastic maximum positive moment reaches the plastic moment, M,., or the elas-
tic maximum pier moment reaches the maximum moment capacity of the pier
section, M,. Fig. 7.12 shows the loading and moment diagrams corresponding
to the first hinge load for uniformly distributed load. The ultimate loads were
well above the first hinge load.

7.4.2 Inelastic stiffness of pier section

To investigate the effects of the inelastic flexural stiffness of the negative
section on the ultimate loading capacity, &, was changed from 0.05 to 1.0 while
keeping the other properties the same as those in the numerical example. Fig.
7.13 and Fig. 7.14 show the positive section moment and the pier section mo-
ment when the ultimate load was reached. As k, was reduced, more moment
was redistributed to the positive section and the positive section moment was
closer to its plastic moment, My, when the negative section reached its max-
imum moment capacity, M,. Therefore, at the ultimate load, the pier section
moment stayed higher on the descending curve for smaller k. value as shown
in Fig. 7.13(b) and Fig. 7.14(b). When &, was about 0.05, the pier section
moment was just below its maximum moment capacity, M,, at the ultimate
load and the positive section moment was close to the plastic moment, ..

Fig. 7.15 and Fig. 7.16 show the effects of the inelastic stiffness of the pier
section on the ultimate loading capacity. In contrast with the positive section,
a reduction in the inelastic stiffness of the pier section increased the ultimate
load as shown in these figures. The reduction in the inelastic stiffness of the

pier section had the same effect as increasing the rotation capacity of the pier
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section at the maximum moment capacity, M,. At k, = 0.05, the ultimate
loads, w, and P,, were increased close to the simple plastic collapse loads, w,
and P,, even for u = -1 /15. The ultimate loads were not sensitive to the value
of k, when &, is greater than 0.2. The ultimate loads were well above the first

hinge load represented by the dotted line.

7.4.3 Yield moment of positive section

To evaluate the effects of the yield moment value of the positive section on
the ultimate load, the yield moment, M,, was changed from 0.3M,. to 1.0,
while keeping the other properties the same as those in the numerical example.
Fig. 7.17 and Fig. 7.18 show the positive section moment and the pier section
moment when the ultimate load capacity was reached. More moment was
redistributed to the pier section ag the ratio of M, /M,, decreased. Therefore,
for w = -1/60, the pier section moment went further down on the descending
curve at the ultimate load as can be seen in Fig. 7.17(b). For u = -1/15, the
positive section moment at the ultimate load decreased as My [M,. decreased

as shown in Fig. 7.18(a).

Fig. 7.19 and Fig. 7.20 show the ultimate load in terms of My /M,.. The
ultimate load was reduced considerably as M,/M,. decreased. The reduction
got bigger especially when the descending curve dropped more rapidly (u =
-1/15) as shown in the figure. At M, /M, = 0.3, the ultimate loads, w, and
Py, were decreased to 0.92w, and 0.94P, for v = -1/60, and 0.8w, and 0.87p,
for u =-1/30 respectively. For u = -1/15, the ultimate load was reduced below
the first hinge load represented by the dotted line. But most composite plate
girders have u value between -1 /60 and -1/30. Therefore, the first hinge load

still provides the lower bound to the ultimate load capacity.
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7.4.4 Cracking moment of pier section

To evaluate the effects of the cracking moment value of the pier section
on the ultimate load, the cracking moment, M., was changed from 0.3Mm, to
1.0, while keeping the other properties the same as those in the numerical
example. Fig. 7.21 and Fig. 7.22 show the positive section moment and the
pier section moment at the ultimate load. More moment was redistributed to
the positive section as the the ratio of M., [ M, decreased, but the effect was
insignificant. For y = -] /60, the ultimate load capacity was obtained when the
positive section reached the plastic moment (Fig. 7.21(a)) and the pier section
moment at the ultimate load was not affected much by the variation in the
ratio of M, /M, (Fig. 7.21(b)). For u = - 1/15, the positive section moment
was a little below its plastic moment at the ultimate load (Fig. 7.22(a)) and
the negative moment went further down on the descending curve as M., /M,
was increased (Fig. 7.22(b)).

Fig. 7.23 and Fig. 7.24 show the ultimate load in terms of M,./M,. The
ultimate load was reduced as M,, /M, was increased. For v = -1 /60, the reduc-
tion was negligible. For 4 = -1 /15, The ultimate load was reduced to 0.85w,
and 0.92P, at M,, /M, = 1.0. The ultimate loads were well above the first hinge
load represented by the dotted line.

7.4.5 The ratio of the maximum positive moment capacity
to the maximum pier moment capacity

In the Previous parametric study, the ratio of the maximum positive mo-
ment capacity to the maximum pier moment capacity, M,./M,, was 1.0. Since
composite plate girders in negative bending could not reach the plastic moment,
Mpn, the maximum pier moment, capacity, M,, was used in the ratio. In order to
evaluate the effects of the ratio, the value of M,/ M, was changed from 0.65 to

1.54. All the cross sectional properties of the pier section were adjusted at the
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same rate while keeping the cross sectional properties of the positive section the
same as in the numerical example. Fig. 7.25 shows the ultimate load in terms
of M,./M, for uniformly distributed load which causes more reduction of the
ultimate load than concentrated load. As the ratio of M./ M, was increased,

wu/wp was reduced, but the reduction was insignificant.

7.4.6 First hinge load as a lower bound estimate

The first hinge load at which the elastic maximum positive or negative
moment reached its maximum moment capacity (Fig. 7.12) provided a lower
bound to the ultimate load capacity of continuous composite plate girders for
the case of M,./M, =1.0. But the first hinge load changes as a function of
the ratio, M,./M,, as shown in Fig. 7.26. The maximum value of the first
hinge load is 0.84P, for concentrated load when Mpe/M, is 1.08. This value is
close to 0.82P, which was used as the first hinge load for concentrated load in
the ultimate load curves in section 7.4.1 through 7.4.4. The maximum value
of the first hinge load is 0.79w, for uniformly distributed load when M,./ M,
is 0.76. This value is higher than 0.67w, which was used as the first hinge
load for uniformly distributed load in the ultimate load curves in section 7.4.1
through 7.4.4. However, the value of 0.79w, still provides a lower bound for
most cases. Moreover, the actual loading is a combination of the uniformly
distributed load and the concentrated load. Therefore, a parametric study for
the case of M./ M, = 0.76 is not needed and the first hinge load can be used as
a lower bound estimate of the ultimate load capacity of continuous composite

plate girder bridges.

7.4.7 Ultimate load capacity by the Eurocode 4 method

To investigate the validity of the Eurocode 4 method for the design of
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continuous composite plate girders, the ultimate load capacity of the girder used
in the numerical example was calculated by this method. In the calculation,
the maximum positive moment was limited to the plastic moment, My, and
the maximum pier moment was limited to the ultimate moment of the pier
section, M,. The Eurocode 4 method allows 20% of the maximum pier moment
by elastic analysis to be redistributed before the sections are designed. The
ultimate load capacity by the Eurocode 4 method was 0.86w, for uniformly’
distributed load and 0.89 P, for concentrated load. Fig. 7.19 and Fig. 7.20 show
that the ultimate load can be reduced below 0.86wp and 0.89P, (the ultimate
load capacity by the Eurocode 4 method) when the descending curve of the pier
section drops very rapidly. The study by Johnson and Fan indicated that the
ultimate load capacity was insensitive to the slope of the descending curve for
continuous composite beams with semi-compact sections. Since the descending
curve of a plate girder section may drop much faster than that of a semi-compact
section, the Eurocode 4 method may give unconservative results for the design

of continuous composite plate girders.



CHAPTER EIGHT

PROPOSED DESIGN METHOD OF CONTINUOUS
COMPOSITE PLATE GIRDER, BRIDGES

8.1 Introduction .

In the AASHTO LFD method, continuous composite plate girder bridges
are designed based on elastic analyses. The ALFD method in the AASHTO
Guide Specifications, which is an extension of the LFD method, considers the
effect of local yielding at Overload using a beam-line method and determines
the maximum load capacity using a concept of an effective plastic moment. The
ALFD procedures are based on the experimental moment-rotation behaviors of
component specimens with compact sections and apply specifically to bridges
with compact sections. Research has been underway to extend the ALFD
method to noncompact beams and plate girders. However, currently available
experimental moment-rotation curves of composite plate girders do not have
sufficiently similar behaviors for the use of one typical curve for a beam-line
method and the concept of an effective plastic moment may give unconservative
results for plate girders with ultracompact compression flanges. Based on the
test results for component specimens and a parametric study of the ultimate
load capacity of continuous composite plate girder bridges, a new design method

is developed.

8.2 Proposed Design Method

The proposed design method uses the same design requirements as the
LFD method at Service Load. At Overload, the LFD method limits the flange

stresses to 0.95F, for composite sections in positive and negative bending. The
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proposed design method uses an automoment procedure similar to that in the
Guide Specifications. The flange stress due to elastic positive moment plus any
corresponding a,utomoment is limited to 0.95F,. However, the proposed design
method does not use a beam-line method to calculate the automoments. In
the proposed design method, the automoments are calculated as the difference
between the moments obtained using the uncracked section stiffness and the
cracked section stiffness for the negative bending area (Fig. 5.16). The elastic
maximum negative moment at Overload is limited to the yield moment, u,.
At maximum load, the LFD method limits the elastic maximum moment
at any section in a continuous bridge to the yield moment for noncompact sec-
tions. However, test results indicated that composite plate girders could reach
the plastic moment in positive bending and higher moment than the yield mo-
ment in negative bending. The results of a parametric study in chapter 7
showed that the first hinge load at which the maximum positive or negative
moment capacity was reached (Fig. 7.12) provided a lower bound estimate of
the ultimate load capacity of continuous composite plate girder bridges. There-
fore, in the proposed design method, the elastic maximum positive moment is
limited to the plastic moment, M,, and the elastic maximum negative moment
1s limited to the maximum moment capacity of the pier section, M,. In calcu-
lating the elastic maximum moment, uncracked section stiffness is used for the
negative bending area. The design requirements of the proposed design method

are summarized in Table 8.1,

8.3 Design Example

To compare the proposed design method with the LFD method, a 180
ft two-span continuous composite plate girder bridge was designed by the two
design methods. General design criteria and the design by the LFD method are

available in the literature[37]. The designs by the two methods are compared in
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Table 8.1 Design requirements of the proposed design method

Design Requirements
Load Positive section Negative section
Service Load same as LFD same as LFD
Overload Ma , Mot Maug g g5, MsM,
S Sc v 3
Maximum Load M< M, MsM,

My = noncomposite dead load moment

Mo = superimposed dead load moment plus factored live load moment

Mauto = automoment at the maximum positive moment location
S = section modulus of stee] section

S. = section modulus of composite section calculated using the modular ratio n
for live load moment and 3n for dead load moment and automoment

Table 8.2. Fig. 8.1 shows the cross sections of the bridge by the two methods.
In the LFD method, the elastic maximum flange stress is limited to 0.95F,
at Overload and the elastic maximum moment to 1.0M, at Maximum Load.
Since the Maximum Load is 1.3 times the Overload, the Maximum Load check
always governs the design of composite plate girder bridges in the LFD method.
In the design example by the proposed design method, the Overload check
controlled the design of the positive section due to the high shape factor of
the composite section (1, /My =1.5). The automoment at the location of the
maximum positive moment was about 5% of the maximum positive moment at

Overload. The top flange and the web were the same but the bottom flange by
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Table 8.2 Comparison of the designs by the two design methods

LFD method Proposed design method
positive negative positive negative
section section section -+ section

Ma = 1880 %% | My=4950%8 |y, ygsgien | py o sozpkt
Moi = 4210%" | Mo =5980%% | My =4180%" | My =6160 k"
1y, =37.08 ksi fp = 38.55 ksi Mauo = 310K8 | M= 17190kt
Overload 0.95F, =47.5ksi | 0.95F, =47.5ksi | 1, = 44.46 ksi M, = 14230kt

fb<0.95Fy ok. | 1< 0.95Fy; ok. |fp < 0.95F, ok. M< My ok.
controls

M =7920 ktt M= 14210 k-ft M= 7840kt | M=14550%"

My = 8500%™ | M, =14230k* M, =10940 %t | M, = 14610kt
MaximumIoad |. ... oo oo’ oo ...

controls conirols controls

the proposed design method was substantially smaller than that by the LFD
method. For the pier section, the ultimate moment capacity, M, (= 1.02M,),
by the modified Q formula was close to the yield moment, M,. Therefore, the
design of the pier section by the proposed design method was governed by the
Maximum Load check. The reduction in the flexural stiffness of the positive
section increased the elastic maximum negative moment, but the increase was
less than 3%. The same cross section as that by the LFD method was used for
the pier section. Total weight of the girder by the proposed design method was
4.5% smaller than that by the LFD method.
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CHAPTER NINE

SUMMARY AND CONCLUSIONS

The primary objective of this study was to evaluate the ultimate load capac-
ity of laterally braced continuous composite plate girder bridges and to develop
a simple and safe design method.

The ultimate capacity of a continuous beam can be determined by the
simple plastic mechanism method if the pier section has a sufficient rotation
capacity for a mechanism to form. However, most plate girders have slenderness
sections whose ultimate bending strengths and rotation capacities are affected
by local instabilities.

In the LFD method of the AASHTO Specifications, continuous composite
plate girder bridges are designed based on elastic analyses and the elastic Max-
imum Load moment at any section is limited to the yield moment. Test results
have shown that typical composite plate girders in positive bending can reach
their plastic moment capacities due to the small web depth in compression.
When the maximum positive moment exceeds the yield moment of the positive
bending section, moment redistribution occurs increasing the negative moment
at the pier. Since the moment-rotation behaviors of negative bending sections
are not well known, the use of the plastic moment capacity of positive bending
sections is limited to simple span bridge design.

The ALFD method of the AASHTO Guide Specifications calculates the
ultimate load capacity of continuous-span bridges using the plastic mechanism
method. Though the ALFD method predicts the actual behavior more accu-
rately and provides more economical design than the LFD method, the ALFD
method applies only to bridges with compact sections.

The ultimate load capacity of continuous composite plate girder bridges
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depends on the moment-curvature characteristics of the positive and negative
bending sections. In this study, the moment-curvature behaviors of positive
bending sections were investigated using a numerical analysis method. To eval-
uate the moment-rotation characteristics of a composite plate girder in negative
bending, an ultimate load test was performed on a 1/2 scale component spec-
imen. Based on the analytical and experimental work, a parametric study
was made to evaluate the ultimate load capacity of continuous composite plate

girders using a nonlinear computer program.
The most important conclusions from this study are as follows:

1. The load at which the maximum positive moment reaches the plastic mo-
ment or the maximum negative moment reaches the maximum bending
capacity of the pier section (whichever is smaller) provides a lower bound
estimate of the ultimate load capacity of continuous composite plate gird-
ers. The moments are calculated from elastic analyses using an uncracked

section at the pier.

2. The proposed design method, in which the elastic maximum positive mo-
ment at Maximum Load is limited to the plastic moment, improves the
limit state criteria and provides a more economical design of continuous

composite plate girder bridges than the LFD method.

3. Experimental results show that the nominal moment strength of composite
plate girders in negative bending can be greater than the first yield moment

calculated considering the sequence of loading.

4. In evaluating the nominal moment strength of noncomposite sections and
composite sections in negative bending, the Q formula in the proposed
AASHTO LRFD Specification may give unconservative results for sections
with very stocky compression flanges and conservative results for unsym-
metrical sections with high shape factors. The modified Q formula devel-

oped in this study gives a better estimate.
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5. The concept of an effective plastic moment in the AASHTO Guide Specifi-
cations may give unconservative results for plate girders with ultracompact
compression flanges.

6. The typical moment-rotation curve used to calculate the automoments for
composite sections in the AASHTO Guide Specifications gives conservative

results for composite sections constructed without shorings.
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